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  Over the last decades, molecular dynamics simulations have been extensively used to 

calculate lattice heat conduction in nano- and bulk-materials, as the realistic potential 

functions, software package, and many core clusters have become widely accessible. 

Nonequilibrium molecular dynamics, particularly the inhomogeneous ones, have been a 

popular choice of method owing to their intuitive way of applying the perturbation to 

the system. On the other hand, despite its simplicity, the results can be significantly 

influenced by the simulation parameters, and various methodological issues such as 

validity of linear response theory, effect of sizes, influence of temperature or heat flux 

control need to be carefully checked and taken into account. These aspects are 

discussed for various types of nonequilibrium methods based on 

homogeneous/inhomogeneous and steady/transient molecular dynamics simulations. 

Their capability to calculate bulk thermal conductivity, heat wave propagation, the 

classical size effect of thermal conductivity at the nanoscale, and total and spectral 

thermal boundary conductance are explained and demonstrated with examples.  

  



 

NOMENCLATURE 

Acronyms 

CNT   carbon nanotube 

EMD   equilibrium molecular dynamics 

DFT   density functional theory 

GK  Green-Kubo 

GROMACS Groningen machine for chemical simulations 

HNEMD  homogeneous nonequilibrium molecular dynamics 

IFC   interatomic force constant 

LAMMPS large-scale atomic/molecular massively parallel simulator 

MD  molecular dynamics 

NEMD  nonequilibrium molecular dynamics 

NAMD  not another molecular dynamics program 

PE  polyethylene 

TBR   thermal boundary resistance 

 

Symbols 

B  phase variable 

C  phase variable 

c  phonon specific heat [JK-1] 

D  phase variable 

F  Hellmann Feynman force [N] 

Fe  external force [N] 

f  phonon frequency [Hz] 

G  Thermal boundary resistance [m2KW-1] 

g  phonon energy spectrum 

H0  Hamiltonian 

k  phonon wavevector [m-1] 

L system length [m] 

Lc thermostat length [m] 

p  atom momentum [kgms-1] 

q heat flux [Wm-2] 

r  atom position [m] 

S  interface area [m2] 

s  phonon polarization  



T temperature [K] 

Tsp  spectral temperature [K] 

ΔT  temperature difference [K] 

ΔTj  temperature jump [K] 

t  time [s] 

v  phonon group velocity [ms-1] 

  average phonon group velocity [ms-1] 

 

Greek Symbols 

α Cartesian component 

κ thermal conductivity [Wm-1K-1] 

κ∞ bulk thermal conductivity 

Λ phonon mean free path [m] 

τ phonon mean free path [s] 

  average phonon mean free path [s] 

τTH thermostat relaxation time [s] 

τT temperature relaxation time [s]  

ω phonon angular frequency [Hz] 

ωmax maximum phonon frequency [Hz] 

ωmin minimum phonon frequency [Hz] 

Φ harmonic interatomic force constant [Nm-1] 

 cubic interatomic force constant [Nm-1] 

X quartic interatomic force constant [Nm-1] 

 

 

 

  



1. INTRODUCTION 

Over the last decades, molecular dynamics simulations have become a popular tool 

to calculate lattice thermal transport properties. It is partly due to the increasing 

capability of molecular dynamics (MD) simulations, where more complex potential 

functions have become available, no longer limited to the simple pair potentials such as 

Lennard-Jones [1] and Morse types [2]. The increasing capability to handle many body 

interactions has dramatically increased the usability of MD simulations for complex 

molecules, solids, and interfaces [3, 4]. Furthermore, the first principles calculations 

have become widely accessible, which gave rise to development of various 

non-empirical potentials, for instance, the ones tuned for phonon transport properties 

[5-7]. Together with the growing speed and capacity of computers, one can perform 

simulations of realistic finite-size materials with non-periodic computational domains. 

This allows us to carry out heat conduction calculation in intuitive setup, for instance, 

calculating thermal conductivity directly from the expression of Fourier’s law by 

imposing steady temperature gradient and heat flux to the system. 

The capability to calculate thermal transport properties of non-periodic system finds 

its attraction in relation with nanotechnology. With the development of technology to 

synthesize and characterize materials at the nanoscale, there has been a great demand to 

understand and control thermal transport of nanostructures and interfaces [8]. At the 

nanoscale, thermal transport needs to be thought differently from that at the macroscale, 

namely in terms of the size effect of the intrinsic heat conduction and the importance of 

interfaces. At the length scale smaller than the phonon mean free path, thermal energy 

gradient divided by the heat flux is no longer a unique material property and depends on 

the size of the system. At the same time, the importance of the interfacial thermal 

resistance becomes more important with respect to the intrinsic thermal resistance. The 

nonequilirbium molecular dynamics (NEMD) simulations offer straightforward means 

to calculate these properties.  

The use of NEMD method is not limited to the nanoscale systems. It can be an 

alternative choice to the counterpart method, the equilibrium molecular dynamics 

(EMD) simulations, widely used to calculate bulk thermal conductivity through the 

Green-Kubo (GK) formula based on the linear response theory. The general strategy of 

NEMD is to calculate thermal conductivity by applying a perturbation to the system and 

measuring the response. The perturbation can be applied in different ways. Most 

intuitive and common choice of perturbation would be the steady temperature gradient 

or heat flux, allowing “direct” extraction of thermal conductivity. Perhaps, more 

nontrivial way would be to apply the perturbation on the Hamiltonian of the system. In 



any case, NEMD methods utilize perturbation to realize faster convergence compared to 

the GK method. In addition to the steady NEMD methods, there are transient methods 

that can be useful to separate different time scales imbedded in the system. 

The spread of molecular dynamics simulations over the last decade is also attributed 

to the great progress in their accessibility. There are software packages such as, 

LAMMPS [9], GROMACS [10], NAMD [11], and DL_POLY [12] that enable even 

non-experts to easily perform molecular dynamics simulations and calculate variety of 

properties without having to code almost at all. However, even in the simplest thermal 

conductivity calculation, such as the direct NEMD methods, there are subtle technical 

issues that can cause severe error in the calculations [13-16]. To this author’s 

understanding, all the MD methods have their strength and weakness and there is no 

perfect one. Therefore it is important to understand the capabilities and limits of each 

method, and to properly apply an appropriate method for each purpose. 

The current paper reviews basic methodologies of NEMD methods to characterize 

lattice heat conduction in solids. Here, NEMD methods are divided into (1) steady 

inhomogeneous method [17], (2) steady homogeneous method [18], and (3) transient 

methods [19]. Each method is designed to target different aspects of thermal 

conductivity and thermal boundary conductance as described in the followings. 

 

2. THERMAL CONDUCTIVITY 

2.1 Steady inhomogeneous method 

2.1.1 Basic methodology 

Since thermal conductivity is a transport coefficient that linearly relates temperature 

gradient and heat flux, the most intuitive approach would be to apply a steady 

temperature gradient (heat flux) and measure the heat flux (temperature gradient). When 

one-dimensional heat conduction is realizable, this can be done simply by sandwiching 

the system of interest with a heat source and a heat sink. The advantage of the method, 

in addition to being intuitive, is that it does not require the periodic boundary condition 

in the direction of heat conduction, and can deal with finite length systems. This can be 

useful on investigating the size effect of nanoscale materials such as thin films [13, 20, 

21] and nanotubes/nanoribbons [22-24]. Such direct NEMD can be performed for over 

hundred nanometers and nanoseconds [14], although it depends on the complexity and 

interaction length of the potential function. For materials with small cross section such 

as carbon nanotubes (CNTs), simulations have been performed for over micrometer 

length [25]. This would require over hundred thousand atoms but the solid thermal 

conductivity calculation without bond switching can be very efficiently parallelized. 



 

 

 

Fig. 1 Schematics of the nonequilibrium molecular dynamics simulations to calculate 

thermal conductivity. Steady temperature (T) or heat flux (q) methods with (a) 

finite-length and (b) periodic system, and (c) a transient method. 

 

The direct NEMD methods for thermal conductivity are illustrated in Fig. 1(a, b). A 

typical simulation begins by equilibrating the entire system at a certain temperature, 

typically the mean target temperature. Then the temperatures of or energy flux to the 

ends of the system are controlled to realize the heat source and sink. Eventually, the 

system converges to a steady state with linear temperature gradient and constant heat 

flux. The required time to reach convergence generally grows with the system size due 

to increase in the degrees of freedom. On the other hand, when the system size is 

comparable to the mean free paths of phonons, increasing the size makes the heat 

conduction more diffusive, which helps the system to reach the steady sate. Once the 

steady state is achieved, from the temperature gradient and heat flux, thermal 

conductivity can be calculated through the Fourier's law, 
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where z is the direction of heat flux. 

Despite the simplicity of the simulation, there are several methodological issues that 

are worth addressing. For instance, for the linear response theory to be applicable, the 

temperature gradient needs to be sufficiently small. Since it is not possible to prove the 

applicability a priori, it needs to be checked by performing multiple simulations with 

different temperature gradients and heat fluxes [16]. Yet the linear response theory has 

been reported to be surprisingly robust, and large temperature gradient (heat flux) in the 

order of 1 Knm-1 (1 μWnm-2) has been shown to give reasonable results [14]. The 

validity of the local thermodynamic equilibrium on defining the temperature in solids 

has also been confirmed [13] in a similar manner as in fluids [16, 26], although the 

validity is certainly questionable for strongly ballistic systems such as short molecular 

chains. 

Another important issue is the choice of boundary conditions. Firstly, one needs to 

choose whether to control the temperature gradient or heat flux. Then, one can either 

choose to control temperature using thermostats (e.g. velocity scaling, Nose Hoover [27, 

28], Langevin [29]), or to rescale/exchange the velocity vectors in the cold and hot 

regions [13, 30-33], respectively. Although it has been pointed out that the choice can 

alter the convergence speed or conservation of momentum and energy, these appear to 

have little influence to the calculated values of thermal conductivity [13, 15]. However, 

these are true only when the control methods are properly installed [34], which can be a 

rather tedious process. This aspect is demonstrated in the following section taking a case 

of the temperature control approach. 

 

2.1.2 Thermostating 

On carrying out the direct NEMD simulations by locally applying the thermostats to 

a solid, the interface between the temperature-controlled part and the rest of the system 

often gives rise to a nonlinear temperature profile near the thermostats. This is 

demonstrated in Fig. 2, taking the case of a CNT [25]. Here, the thermostats at 310 K 

and 290 K were applied to the ends of a 50-nm-long CNT, and the data were sampled 

for 18 ns (36 million time steps). The nonlinear profile appears due to mismatching of 

lattice-vibrational spectra between the temperature controlled part and the rest of the 

system. The mismatching causes reflection of phonons and alters scattering dynamics at 

the boundary, and thus, gives rise to local nonequilibrium phonon distribution. When 

the system length is smaller than the characteristic phonon mean free path, which is the 

case in the CNT, the nonequilibrium distribution can significantly alter the overall heat 

conduction. Note that, although the temperature profile around the center appears to be 



linear, this only means that at least some of the phonons are transported diffusively, 

since the ballistic phonons do not contribute to the temperature gradient. 

 

 

Fig. 2 Influence of the length of the layers controlled by Nose-Hoover thermostat (Lc) 

on the temperature profile [25]. A case of 25-nm-long (5, 5) carbon nanotube is 

presented. 

 

One way to quantify the significance of the nonlinear temperature profile or the 

temperature jump ΔTj at the boundary between thermostated part and the rest is to 

translate it to thermal resistance ΔTj/q (Thermal Boundary Resistance, TBR). Most 

intuitive approach to calculate thermal conductivity of a finite system is to minimize the 

TBR by choosing the appropriate thermostat parameters. Here a case with Nose-Hoover 

thermostat [27, 28] is introduced, although the following discussion can be also applied 

to other thermostats. The Nose-Hoover thermostats have two tuning parameters; the 

length of the temperature controlled part Lc and the relaxation time τTH. Increasing Lc 

permits larger wavelength phonon modes and hence attenuates the discrepancy of 

phonon spectra between temperature-controlled part and the rest of the system. This can 

be seen in the Lc-dependence of the temperature profiles (Fig. 2), where the smaller Lc is, 
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the larger ΔTj is. As denoted in the figure, ΔTj here is obtained by extrapolating the 

linear temperature profile extrapolated to the boundary and averaged for left and right 

ends. The influences on the thermal transport (temperature gradient, heat flow, and 

thermal conductivity) are summarized in Fig. 3(a-c). Both the temperature gradient and 

heat flux increases with Lc and eventually saturated at the upper limit Lc~L , where the 

phonon spectra (more precisely the density of states) of the parts with and without 

thermostat become identical. In terms of the relaxation time τTH, TBR exhibits a 

minimum with a certain τTH due to the crossover between over and under damping (Fig. 

4). 

As shown in Fig. 4, the optimal thermostat parameters (τTH and Lc) also depend on L 

since the permitted phonon wavelengths change. Therefore, ideally speaking, the 

parameters need to be tuned for each L when investigating the size effect, which could 

be rather tedious. Technically speaking, one could include the tuning process into the 

molecular dynamics iterations, but it appears to be more common in the literature to 

simply perform a number of different simulations. 

It is worth noting that, although the TBR may be thought as a numerical artifact when 

calculating thermal conductivity of an isolated system, the observed coupling between 

the TBR and intrinsic heat conduction is an important issue in practical situations, for 

instance when the system is bounded with connections to other materials. In such case, 

the heat conduction properties would be inevitably altered by TBRs at the connections. 

Therefore, in fact, it might be more realistic to examine the heat conduction with 

presence of TBRs, although formulation of a general case would be difficult since such 

effects would be strongly case-dependent. 

 

 

Fig. 3 Influence of thermostat length Lc and relaxation time of Nose-Hoover thermostat 

τTH on the temperature gradient, heat flow, and thermal conductivity [25], in a case of 

50-nm-long (5, 5) CNT. 
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Fig. 4 Influence of the relaxation time of Nose-Hoover thermostat τTH on TBR [25]. 

 

2.1.3 Classical size effect 

When the boundary conditions are properly installed, the direct NEMD simulation 

becomes a powerful tool to calculate the size effect of thermal conductivity. Here we 

refer this as classical size effect (in contrast to quantum size effect), which arises from 

the ballistic heat conduction manifesting at small scales [8]. Using the phonon gas 

kinetics model, this can be described in terms of phonon mean free paths Λk,s and the 

system length L, where the subscripts k and s are the phonon wavevector and 

polarization. Let us now base the discussion on the Boltzmann–Peierls description of 

thermal conductivity [35], 
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where ck,s and vk,s are the phonon specific heat and group velocity. Here we stay in the 
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divide the heat conduction into three regimes of L: (i) all phonons exhibit Λk,s<L 

(diffusive conduction), (ii) all phonons exhibit Λk,s>L (ballistic conduction), and (iii) 

mixture of (i) Λk,s<L and (ii) Λk,s>L (quasi-ballistic conduction). The kinetic theory in 
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L starting from the large bulk crystal, thermal conductivity remains constant until L 

becomes smaller than Λk,s of some of the heat carrying phonons, then decreases 

nonlinearly until it asymptotically approaches the linear dependence at the small L limit.  

Note that this size effect is somewhat different from the one found in periodic 

systems. As it will be discussed later in details thermal conductivity calculated from a 

periodic simulation cell can be similarly limited by its finite size due to the missing 

contribution from the phonons with wave length longer than the cell size. However, due 

to the periodicity, the phonons are allow to travel longer than the cell size through the 

periodic boundary and thus the phonon mean free paths are not limit by the cell size. In 

this sense, the size effect in a periodic system cannot be associated with a real 

phenomenon, and thus, the periodic simulation is suited for an investigation of the 

classical size effects. 

The usage of thermal conductivity to express the heat conduction with ballistic 

phonon transport can be argued since thermal conductivity is defined based on the 

diffusive description (Fourier’s law). Therefore simply expressing the heat conduction 

in terms of thermal conductance should be more suitable at the scale smaller than 

phonon mean free paths. However, it is often convenient to effectively define the 

transport coefficient for the sake of continuum representation and comparison with 

previous studies. 

A classical size effect obtained from NEMD is demonstrated here by taking the 

previous CNT as an example. As shown in Fig. 5, the overall trend of the slope indicates 

the gradual transition from ballistic to quasi-ballistic heat conduction. The asymptotic 

match of the data to the dashed line suggests nearly pure ballistic heat conduction at the 

small L limit. On the other hand, the positive gradient at the upper bound indicates that 

the limit of the quasi-ballistic heat conduction exceeds a micrometer. Such long 

quasi-ballistic limit of CNT has been also shown by lattice dynamics [36]. Note that 

heat is carried not only by the ballistic transport of acoustic phonons but also by that of 

various optical phonons for a realistic length. Such an active role of optical phonons as 

heat carriers at the nanoscales has been also discussed for other materials [37], and it is 

particularly significant for materials with large unit cells such as CNTs. 

The length dependence has been compared with a phonon transport model [38], 

which seamlessly handles the crossover from fully ballistic to diffusive thermal 

transport regimes, 
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where the prime denotes the frequency-dependent representation. The expression 

reduces to the Landauer’s formula for coherent phonon transport with perfect 

transmission [39, 40] at the small L limit (L→0). On the other hand, it reduces to Eq. (2) 

at the large L limit (L→∞). The “transmission function”  )()(  ss L   can be 

derived either by describing the phonon-phonon scattering as fictitious probes with the 

analogy to the electron transport [38] or by applying the Matthiessen’s rule at the 

Casimir limit [41] in mode-dependent fashion. By approximating the mean free paths 

based on the Klemens’ model [42], as seen in Fig. 5, the agreement between NEMD and 

the phonon transport model is remarkable. This provides a unified picture of the lattice 

heat conduction in the direct NEMD simulation and the phonon gas kinetics theory. 

 

 

 

Fig. 5 The classical size effect of carbon nanotube thermal conductivity at room 

temperature. The blue and red circles are nonequilibrium molecular dynamics data of (3, 

3) and (5, 5) carbon nanotubes, respectively. The blue and red solid curves denote the 

corresponding theoretical model [38]. 

 

2.1.4 Bulk thermal conductivity 

The direct NEMD methods can be also useful to calculate bulk thermal conductivity 

with advantage in realizing faster conversion than the GK method. While many of the 

early works have used simple systems to study the methodological aspects, over the last 

decade or so, there have been an increasing number of works on more realistic materials 



including silica [33, 43], zirconium compounds [44, 45], nanotubes [46], and polymers 

[47]. NEMD methods also have advantage in calculating systems with complex 

unitcells, where interpretation of the GK method can be challenging [48]. This aspect 

has made the NEMD a useful tool to calculate thermal conductivities of superlattice 

[49-54], nancomposites [55-57], and alloys [58]. For this purpose, simulations with 

periodic boundary condition can also be useful. As shown in Fig. 1 (b), the simulation 

of the periodic cell can be realized by imposing two steady-temperature gradients or 

heat fluxes, which can be done for instance by rescaling or exchanging the velocity 

vectors in the cold and hot regions [13, 30-33]. 

Here, we encounter the same problem as the above classical size effect. It has been 

pointed out by Schelling et. al. [14] that phonon scattering at the heat source and sink 

contributes more than the intrinsic phonon scattering to thermal conductivity unless the 

simulation cell is many times longer that the phonon mean free paths. Since this may 

not be affordable in many cases, a common practice is to calculate effective thermal 

conductivity for various sizes and extrapolate them to the infinite size value. A 

commonly used function for the extrapolation [59] is  

L

A

L



1

)(

1     (4) 

where A is a constant. As described by Schelling et. al. [14], the expression comes from 

the Matthiessen's rule at the Casimir limit [41]. The general expression of the mixing 

rule gives the length dependent relaxation time τ as a function of the relaxation times of 

intrinsic phonon-phonon scattering τ∞ and the modeled boundary scattering v/L, 
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Here, as denoted with the bar, the properties are averaged over all the phonons, or all the 

phonons are assumed to have the same properties. Now, assuming 3/ vc  to hold, 

we can derive Eq. (4). 

Despite the rather crude approximation with the averaged phonon properties, the 

scaling has successfully reproduced the values obtained from the GK calculations [14]. 

The scaling is now widely accepted and has been used by a number of the works [15, 43, 

56, 59-67]. On the other hand, since phonon transport properties can be strongly 

multiscale [68], there should be limits to the range of applicability beyond which the 

mode dependence matters. Such applicability and limit of the averaged description has 

been investigated in mode-dependent fashion by Sellan et. al. [48], where they find that 



thermal conductivity is underestimated when the system size is smaller than the largest 

mean free paths with dominant contribution to the bulk thermal conductivity. 

 

2.1.5 Interatomic force constants from first principles 

In many of the cases reviewed above, the accuracy of the NEMD calculations has 

been evaluated based on comparison with EMD but not with experiments due to the 

incompleteness of the potential functions (or force fields). For instance, silicon thermal 

conductivity obtained by commonly use potentials such as Stillinger Weber [69] and 

Tersoff [70] have been shown by lattice dynamics calculations to significantly 

overestimate the experimental values [71]. This has been recently overcome by 

development of first-principle-based anharmonic interatomic force constants (IFCs). 

Using lattice dynamics and EMD with the IFCs, successful calculations of lattice 

thermal conductivity have been reported for silicon [5, 6, 72], diamond [73], 

half-Heusler compounds [7], lead chalcogenides [74, 75], and gallium arsenide [76]. 

Such force field can be certainly used in NEMD, which is discussed in the following. 

The anharmonic IFCs can be expressed in the form of Taylor expansion around the 

equilibrium atomic positions, 
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where, , , and  are the harmonic, cubic, and quartic IFCs. The indices i, j, k, and l 

are the atom indices, and α, β, γ, and δ represent the Cartesian components. One way to 

calculate the anharmonic IFCs is the real space displacement method [77]. In this 

method, sets of force-displacement data are calculated while displacing the atoms from 

the equilibrium positions. The Hellman-Feynman forces can be obtained by DFT 

calculations in conventional supercell (typically about 100 atoms). Equation (6) is then 

fitted to the obtained force-displacement data, taking the translational and rotational 

invariance conditions into account. 

The anharmonic IFCs are usually used for lattice dynamics calculations since they 

are convenient to calculate phonon properties (heat capacity, group velocity, relaxation 

time) through dynamical matrix and Fermi’s golden rules. Application of the force field 

to MD simulation is somewhat tricky since the even order terms in the expansion makes 

the system unstable to large displacements under realistic temperatures. However, this 

can be remedied to some extent by collecting the force-displacement data giving weight 

to realize stable simulation [78]. Figure 6 shows the result of direct NEMD simulation 

of PbTe crystals. The calculations were performed for various lengths, and the bulk 



thermal conductivity was calculated using the extrapolation method in Eq. (4). The 

obtained bulk lattice thermal conductivity was 2.1 Wm-1K-1 at 300 K [79], which is in 

good agreement with the experimental value 2.2 Wm-1K-1 [80, 81]. Note that MD, being 

a real space method, has an advantage over the lattice dynamics in the simplicity to treat 

local structures such as impurities and defects [78]. 

 

 

 

Fig. 6 Extraction of the bulk thermal conductivity of PbTe. The size dependent values 

were calculated using the direct NEMD method based on the interatomic force constants 

obtained from first principles [79]. 

 

2.2 Homogeneous method 

As mentioned above, the direct NEMD method has advantage over the GK method 

by realizing faster convergence. On the other hand, the direct method usually requires 

large temperature gradient and heat flux, often resulting in nonlinear temperature 

profiles near the heat sink and source. The homogeneous NEMD (HNEMD) method [18, 

82-84] lies in between the GK and the direct method. It also aims to achieve fast 

convergence by perturbing the system with the fictitious force, but keeps the 

perturbation small so that resulting nonequilibrium system can be described with 

equilibrium time correlation functions. This is done by extending the linear response 

theory to non-equilibrium distribution functions [18].  

In the framework of linear response theory the equation of motion of the 

monoatomic system is written as 
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where (ri, pi) is the phase space information of ith atom. Here the canonical system with 

Hamiltonian H0 ( ii H pr  0 , ii H rp  0 ) is coupled with an external time 

dependent perturbation Fe(t) through the phase variables Ci and Di. The rate of changes 

of the internal energy due to the external force is expressed as 

)(),(),,(0 ttH eiiii FprApr    (8) 

Due to the perturbation by the external force Fe(t), the distribution function changes 

from the canonical distribution function to non-canonical distribution function f(ri, pi, t).  

We now write down the ensemble average of an arbitral phase variable B(ri, pi, t) as 

iiiiii tft prprprBB dd),,(),()(
~




    (9) 

By using linearized Liouville equation, which gives the non-canonical distribution as a 

function of Fe and A, assuming Fe to be time independent, at a steady nonequilibrium 

state, we obtain, 
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where subscript c denotes the canonical ensemble. Now by choosing the heat flux vector 

q(ri, pi) to be the phase variable B(ri, pi) satisfying 0),( 
cii prq , and with the GK 

formula for thermal conductivity reading, 

 
t

c
B

tqtq
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V

0
2

d)0()( ,  (11) 

we obtain, 

e
Ft VTF
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where q and Fe are the components of q~  and Fe in the direction of heat conduction. 

The appropriate phase variables in Eq. (7) for pair potential has been derived as 



followings, 
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The algorithm has been extended to many-body potentials [85, 86] and mixed species 

systems [87, 88]. 

In order to calculate bulk thermal conductivity, the method requires multiple 

simulations for different values of Fe and extrapolation to Fe→0. There is certain 

ambiguity to the range of Fe. Too small Fe would make the external force field 

ineffective compared to the background thermal noise, and too large Fe would result in 

strongly nonequilibrium states with nonlinear dependence [86]. Appropriate range of Fe 

has been discussed in terms of kinetic theory for phonon gas [86] although the analysis 

so far is still limited to single scale (gray) phonon transport. Note that, for a 

quasi-ballistic system, similarly to the GK method, the method also requires the 

validation of the size effect to account for the missing contribution from the long 

wavelength phonons. Further development of these analyses may make the HNEMD 

method more accessible to wider researchers. Nevertheless, it has been shown that 

calculated thermal conductivity agrees with other methods [18, 86] and this has 

encouraged applications of the method to various systems including nanotubes [89-91] 

and nanowires [92]. 

 

2.3 Transient method 

Transient NEMD method provides intuitive picture of heat propagation. The basic 

idea is to transiently apply local temperature perturbation and directly observe the 

diffusion of heat [Fig. 1(c)]. A few have applied such method to calculate thermal 

conductivity from the transient behavior. For instance, Daly et. al. [93] has performed a 

transient simulations of GaAs/AlAs supperlattice with sinusoidal temperature 

perturbation and the extracted thermal conductivity was later shown to agree with the 

direct method [50]. Applicability of the transient method to extract thermal conductivity 

from ab-initio molecular dynamics has also been demonstrated [94]. 

On the other hand, more common use of the transient NEMD is to investigate 

transient thermal phenomena, such as propagation of local heat. This is motivated by the 

investigation of the non-Fourier heat conduction or heat wave, which has long history 

and vast early literature some in relation with the second sound [95]. The deviation of 

nonstationary heat conduction from the fully diffusive Fourier’s law description has 



been known to become significant when the time and length scales of the system are 

within certain temporal and spatial windows of relaxation. Such non-Fourier heat 

conduction characteristics has been discussed by models based on microscopic phonon 

transport and the macroscopic continuum approaches, which reach similar expressions 

that suggest the collective phonons or heat propagating in a wavelike form at a certain 

speed [96, 97]. While models are limited to systems with weak nonlinearity, Tsai and 

MacDonald [98] were the first to perform NEMD simulations to examine the 

propagation of a heat wave under strongly anharmonic conditions. Later, Volz et al. [99] 

carried out NEMD simulations of thermally perturbed solid argon and compared the 

results with the Cattaneo-Vernotte equation [96, 97]. This has been recently explored 

with materials with long phonon mean free paths such as nanotubes and nanowires 

[100-103].  

Further attempts have been carried out to apply various macroscopic non-Fourier heat 

conduction equations to the spatiotemporal temperature profiles obtained by transient 

NEMD. The work on CNT [100] shows that the conventional hyperbolic diffusion 

equation [96, 97] fails to predict the heat conduction due to the lack of local diffusion 

but this can be remedied by adopting a model with dual relaxation time [104, 105]. The 

transient NEMD can also be used to probe events with different time scales. The 

excitation and the evolution can be decomposed to temporal evolution of spectral bands, 

which reveals the quasi-ballistic features of the phonon transport [100-103]. This has 

been exercised to identify significant contribution of the optical phonons to CNT heat 

conduction [100]. 

 

3. THERMAL BOUNDARY CONDUCTANCE 

Over the last decade, there has been an increasing interest to understand heat 

conduction across the interface since it dominates the overall heat conduction at the 

nanoscale. The NEMD method has been widely used to investigate the thermal 

boundary conductance at interfaces, reciprocal of the thermal boundary resistance (or 

Kapitza resistance [106, 107]). While alternatives would be the lattice dynamics method 

[108-110] or nonequilibrium Green’s function methods [111], which give easier access 

to phonon transmission function and quantum effects, NEMD has advantages in its 

ability to handle complex structures and geometries, and including anharmonic effects 

without any assumptions (Recent developments in EMD techniques to obtain interfacial 

phonon transport is reviewed by Chalopin et. al. [112]). NEMD simulations are usually 

performed in inhomogeneous manners, either by steady method or transient method. 

The steady method can calculate intrinsic and interfacial thermal conductance at the 



same time and is most commonly used. On the other hand, the transient method can be 

useful to identify multiple timescales imbedded in the phenomenon. 

 

3.1 Steady state (direct) NEMD method 

Considering two leads and an interface in the middle, one can calculate the thermal 

boundary conductance or resistance by modeling it as a serial connection of thermal 

resistances [113]. As illustrated in Fig. 7 (a, b), a typical approach is to first fit linear 

lines to the temperature profiles of the leads and extrapolate them to the location of the 

interface. Then by measuring the temperature jump at the interface location ΔTj, the 

thermal boundary conductance is calculated as  

j/ TqG  .    (14) 

The method has been mostly applied to planer interfaces [114-118] but has also been 

applied to cylindrical configurations [119, 120] as shown in Fig. 7(c), which can be 

useful to compute interfacial thermal conductance in some nanocomposites. Here 

extrapolation is done based on the solution of the 1D-axisymmetric heat conduction 

equation (C1lin(r)+C2). Shenogin et. al. [120] calculated the thermal boundary 

conductance between a CNT and the octane matrix and obtained reasonable value in 

comparison with the experiments [121]. The steady method has been also applied to 

other classes of interface, such as in CNTs [122] and graphenes [123].  

Numerous case studies have been carried out to gain insights into the mechanism of 

thermal boundary conductance using NEMD including effects of bulk modulus [124], 

temperature [114, 118, 124], interface bonding strength [124], and pressure [125]. These 

effects have been often discussed in terms of the vibrational mismatch models. For 

instance, it was shown for a silicon-amorphous polyethylene interface that the thermal 

boundary conductance decreases with stiffening the silicon. This was attributed to the 

enhancement of the effective mismatch, reduces the elastic phonon transport across the 

interface. On the other hand, it was shown that the thermal boundary conductance 

increases with temperature, suggesting the contribution of inelastic phonon transport. 

Coming back to the methodology, one realizes that there is certain arbitrariness in 

the choice of the interface location. As in Fig. 7(a), if the interface is thermally sharp 

(atomically flat interface and localized or negligible strain/stress fields resulting in sharp 

temperature discontinuity), the interface can be located intuitively between the two 

materials. However, if each species diffuses into each other or the strain/stress field 

extends for a certain distance, the interface will have finite width. In such a case, one 

typically recognizes nonlinear temperature gradient in the interface region as illustrated 



in Fig. 7(b) and the calculated thermal boundary conductance may depend on how the 

interface width and position are defined. A reasonable way is to define the entire region 

with nonlinear temperature as the interface region, and to extrapolate the linear 

temperature profiles to the midpoint of the interface region. This discussion becomes 

particularly relevant when taking into account the mass diffusion layer at the interface, 

which is expected to form at strong interfaces during the binding or deposition process. 

The NEMD simulations have shown that the presence of such layer with mix species 

can enhance thermal boundary conductance [126, 127], which opens up a possibility to 

engineer the interface to control heat flow. 

Similarly to the previously discussed thermal conductivity calculations, the effect of 

simulation parameters on the obtained values needs to be examined. For instance, the 

leads and the thermostated part need to be long enough to account for the contribution 

from the long wave phonons, which usually have large interface transmittance, and to 

avoid the excess nonequilbrium phonon distribution caused by ballistic phonon 

transport. Since more length scales are involved than in the thermal conductivity 

calculations discussed in the previous section, the appropriate scaling of the size effects 

are not known. Nevertheless, a typical practice is to confirm the independence of the 

resulting thermal boundary conductance (or resistance) on the simulation parameters. 

Table 1 shows an example from Landry and McGaughey [118] on the interface between 

silicon and germanium crystals, where the effects of heat flux (q), lead length (L), 

thermostat length (Lc), cross sectional area (S), and orientation were checked.  

 

 

 
Fig. 7 Schematics of thermal boundary conductance calculations. 
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Table 1 Effect of direct NEMD simulation parameters on the thermal boundary 

resistance of the Si/Ge interface at 500 K [118]. S and a are the cross sectional area and 

the lattice constant parallel to the interface. 

q 

(GWm-2) 

L 

(monolayers) 

Lc 

(monolayers)

S/a2 Orientation TBR, G-1 

(10-9 m2KW-1)

7.23 400 50 16 Si/Ge 2.93 

7.23 400 50 16 Ge/Si 2.94 

3.10 400 50 16 Si/Ge 3.02 

13.4 400 50 16 Si/Ge 2.97 

7.23 200 50 16 Si/Ge 4.01 

7.23 300 50 16 Si/Ge 3.22 

7.23 500 50 16 Si/Ge 2.72 

7.23 600 50 16 Si/Ge 2.83 

7.23 400 20 16 Si/Ge 3.17 

7.23 400 100 16 Si/Ge 2.95 

7.23 400 50 25 Si/Ge 3.13 

7.23 400 50 36 Si/Ge 2.81 

 

 

3.2 Transient method 

When the thermal boundary resistance is much larger than the intrinsic thermal 

resistance of the two materials, the lumped heat capacity method can be applied. At this 

limit, the heat conduction between material A and material B can be considered as heat 

conduction between two thermal points with certain heat capacities. When A is 

instantaneously heated by ΔT0 and then relaxed, the time history of the temperature 

difference between A and B follows ΔT=ΔT0exp(-t/τT) and gives the relaxation time τT 

of the interfacial heat conduction, which can be translated to thermal boundary 

conductance as follows. 

TS
CC

G





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






BA

11

1
.   (15) 

where C and S are the heat capacity and interfacial contact area, respectively. 

Let us now compare the steady method and transient method. Such a comparison 

was first successfully carried out by Shenogin [120]. Here, a typical results of the steady 



[Figure 8 (a)] and transient [Figure 8 (b)] methods are shown by taking the case of 

A:CNT and B:polyethylene (PE) interface in cylindrical configuration [Fig. 7(c)]. 

Figure 8(a) shows the temperature and density profiles of PE as functions of the 

distance from the CNT on applying steady heat flux. Figure 8(b) shows the relaxation of 

the temperature difference between the CNT and PE upon initially raising the CNT 

temperature by 100 K (ΔT0=100 K). The thermal boundary conductance calculated by 

the two methods were 16.6 MWm-2K-1 and 15.3 MWm-2K-1 at 500 K, respectively, 

confirming the validity of the methods for the CNT-PE system. 

 

 

 

Fig. 8 (a) The steady NEMD simulations of a CNT-polyethylene system. The average 

temperature and number density profiles of polyethylene. The solid line denotes the 

fitting curve of the temperature profile. (b) The transient NEMD simulations. Averaged 

time histories of CNT temperature, PE temperature, and their difference. The 

temperature difference is fitted with an exponential function [128]. 

 

Similarly to the thermal conductivity calculation, the transient method can be also 

useful to identify multiple timescales in heat conduction across the interface. The 

simplest case is the dependence of thermal boundary conductance on the phonon 

frequencies. This can be done by calculating the phonon energy spectrum within a short 

time window Δt and observing the relaxation of the frequency dependent thermal energy. 

The phonon energy spectrum can be extracted by calculating the power spectral density 

of the velocity fluctuations [100], 
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where f is the frequency, vj is the velocity vector of jth atom, and N is the number of 

atoms in the heated material (A).  

When A is momentarily heated with the equilibrium phonon distribution, the 

mode-dependent phonon transmission across the interface makes the distribution 

nonequilibrium, whose extent depends on the mode-dependent intrinsic and interfacial 

phonon scatterings and transmission. The frequency dependent thermal energy during 

the nonequilibrium process can be effectively quantified by introducing the spectral 

temperature, 

Aeqsp )(

),(
),( T

fg

tfg
tfT  ,   (17) 

where geq is the equilibrium spectrum of A at temperature TA. For simplicity, if we 

assume the material B to be always in equilibrium at TB, the relaxation of the spectral 

temperature can be written as, 
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 The approach has been applied to CNT embedded in argon [129]. Since the full 

frequency analysis would require too many ensembles, the approach has been 

demonstrated by splitting the frequency range into the two regimes (1) low frequency 

regime, where the spectra of CNT and argon overlaps, and (2) high frequency regime, 

where they do not overlap. As shown in Fig. 9, the thermal energy in (1) relaxes to the 

argon matrix temperature much faster than that in (2). This demonstrates the dominant 

thermal boundary conductance in the frequency regime with spectral overlap between A 

and B, i.e. dominant role of elastic scattering. 



 

Fig. 9 Spectral temperature of instantaneously heated CNT in solid argon matrix. Tsp
(1) 

and Tsp
(2) are those of the low-frequency region and in the high-frequency region. The 

data denote the difference between Tsp
(1) and TAr (green squares) and the difference 

between Tsp
(2) and TAr (blue dots) fitting with single exponential functions.  

 

4. SUMMARY 

NEMD method with perturbation to the system involves several methodological 

issues, but when these are properly installed it could serve as a powerful tool to 

calculate thermal conductivity and thermal boundary conductance. Although the 

classical merit of realizing faster conversion than GK may have become less attractive 

with the growing accessibility to large ensembles with many-core clusters, the 

advantage of NEMD in the capability to handle complex structures and nanoscale 

properties have grown with nanotechnology. For instance, the most commonly used 

inhomogeneous steady methods enables us to calculate the classical size effect in thin 

films, nanotubes, graphene, and nanowires. Furthermore, for nanomaterials smaller than 

the simulation cell, NEMD can be applied to arbitral structures ranging from molecular 

chains to graded materials. Combined with ability to compute directional dependence, 

the method has been widely used to propose structures for thermal rectifier [130-133]. 

The steady and transient NEMD methods can probe local events in space and time. 

Thermal boundary conductance is a representative property, which can dominate heat 

conduction at small scale. With this capability and growing accessibility attributed to 

the various software packages, and with further improving the accuracy of the MD force 

fields, such as the interatomic force constants obtained from first principles, the NEMD 

methods are expected to become more useful to understand and design materials in 

various applications including thermal interface materials, nanostructured 

thermoelectrics, thermal insulating ceramics, phase change materials, and high power 



transistors. 
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