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Abstract

Simple model equations were formulated to examine the influence of linear feedback control on oscillations in thermocapil-
lary convection. Limiting the solutions to have a few wavenumbers and roughly assuming the other spatial profiles, the system
of equations is reduced to a set of ordinary differential equations. This toy model is able to recreate basic features of the un-
controlled system such as standing/traveling wave structures and bifurcation characteristics. The control was realized by locally
heating and cooling the free surface by linearly feeding back the temperature signals measured in local positions. Implementing
the proportional feedback control in this toy model, we could capture some of the essential qualitative features of the influence
of the control observed in the previous experiments, including the limitation of the control. The formulation of the toy model
can be used to gain physical insight in the control problem.

0 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Oscillatory thermocapillary convection is often blamed for detrimental striations in the finished material produced by the
container-less crystal growth method called floating-zone method [1]. Having the industrial motivation and advantage to be
carried out in a micro-gravity condition, there have been a growing number of researches reported on the oscillatory thermocap-
illary convection in the past decades. Since the first experimental observation of the three-dimensional time-dependent state in
thermocapillary convection by Schwabe and Scharmann [2] and Chun and Wuest [3], many works have been devoted to identify
the mechanism of the instability [4—6] and to reveal the modal structures at the onset of the oscillation and their bifurcation
characteristics in the supercritical regime [7,8]. Recently, flow structures for considerably high Marangoni na)jbeare(
reported, where the flow becomes chaotic and turbulent-like [9].

With the knowledge obtained from those studies concerning the instability mechanism and bifurcation characteristics, the
ultimate goal would be to suppress the oscillation. Our challenge in this report is to stabilize the flow by local modification of
heat conduction on the free surface based on continuous feedback control. Some works have been reported on the control o
oscillatory thermocapillary convection in various geometries.
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An attempt to stabilize the thermocapillary wave instability in an experiment on a plane fluid layer was made by Benz et
al. [10]. The temperature signal and the phase information sensed by thermocouples near the cold end of the layer were fed
forward to control a laser which heated the downstream fluid surface along a line.

A nonlinear control was performed by Petrov et al. [11,12] to stabilize the oscillation in a half-zone model by using local
temperature measurements close to the free surface and modifying the temperature at different local locations. They have
constructed a look-up table based on the system’s response to a sequence of random perturbations. A linear control law using
appropriate data sets from the look-up table was computed. The control law was updated at every time step to adapt the
control law to the nonlinear system. Using one sensor/actuator pair, a successful control was observed at the sensor locatior
for Ma ~ 17 750, however infrared visualization revealed the presence of standing waves with nodes at the feedback element
and the sensor. This was resolved by adding a second sensor/actuator pair, which allows the control to damp out both waves
propagating clockwise and counterclockwise, thus standing waves. The performance of the control was reported for a fixed
Ma ~ 15000, where the critical value wl&acr ~ 14 000.

This was followed by studies applying linear and weakly nonlinear control. For an annular configuration, Shiomi et al.
[13,14] applied active feedback control based on a simple cancellation scheme. Active control was realized by locally modifying
the surface temperature using the local temperature measured at different locations fed back through a simple control law. Using
two sensor/actuator pairs, a significant attenuation of the oscillation was observed in a rifagevith the best performance
in the weakly nonlinear regime. Applying the control on an oscillation with azimuthal wave number of 3 (mode-3), in the
regime with weak nonlinearity, the oscillation was suppressed to the background noise level. The experiments also revealed the
limitation of the control. Whema is about 15% above the critical value, control fails to achieve complete suppression of the
oscillation, though a significant attenuation is still achieved. The loss of control is accompanied by an increase in the amplitude
of the first overtones and a modulation in the controlled signal, which may suggest the appearance of another mode triggered
by the control.

Recently, with a similar method, but in a half-zone model, weakly nonlinear control of the oscillatory thermocapillary
convection is reported by Shiomi et al. [15]. The experiment utilizes a unit aspect ratio liquid bridge where the most dangerous
mode has an azimuthal wave number of 2 when the control is absent. The performance of control was quantified by analyzing
local temperature signals and the flow structure was simultaneously identified by flow visualization. With optimal placement of
sensors and heaters, proportional control can Mg by more than 40%. The amplitude of the oscillation can be suppressed
to less than 30% of the initial value up to 90% Mfcr. The proportional control was tested for a period doubling state to
stabilize the oscillation to a periodic state. Weakly nonlinear control was applied by adding a cubic term in the control law to
improve the performance of the control and to alter the bifurcation characteristics of the system.

Our earlier experimental works in proportional control have shown not only successful performance but also its limitation. In
the studies in an annular geometry by Shiomi et al. [13,14], it was observed that the proportional control performs worse as the
nonlinearity of the system becomes stronger. The results suggest that the limitation of control may be due to the appearance of
the neighboring modes, however, this solely does not explain why the overtones are amplified. There seems to be a mechanismiir
the controlled system to amplify the overtones. In order to investigate the cause of the limitation and the possibility of a remedy,
a toy model was formulated. Here, the intention is to construct a toy model which, at least qualitatively, reproduces important
linear and nonlinear features of the system. For this purpose, limiting the number of azimuthal modes to the fundamental and
first harmonic ones, and assuming the other spatial profiles, we formulate a set of ordinary differential equations. Consequently,
implementing the feedback control to this toy model, we could capture some of the essential qualitative features of the influence
of the control.

The model equations are addressetbgsnodelgiue to the extreme simplification based on rather crude assumptions. Being
atoy, there are possibilities of discrepancies with the actual system which can certainly result in the limitation of the toy model
for further application. However, such an approach is useful to reduce the complexity of the modeled system and to grow insight
to the problem. Especially, when certain aspects of the system are targeted, such a toy model can be very valuable.

It should also be noted that the ultimate aim of constructing the model is to utilize it to test more sophisticated control
schemes. Some of the available schemes such as the optimal control theory require the system equations to estimate the whol
flow field from limited measurement information and to predict the reaction to the control. Although a more accurate model
would contribute to better prediction of the system, thus better performance of control, full simulation of the Navier—Stokes
equations could hardly catch up with the real time experiment in most of the flow cases. In low dimensional problems such as
the current problem and the thermal convection loop presented by Bau and Torrance [16], there is a better chance that a simple
set of ordinary differential equations can be sufficient, even with fairy strong nonlinearity.

The outline of the paper is as follows. Section 2 describes the formulation of the toy model. In Section 3, for the toy model
with absence of control, general features of nonlinear dynamics is shown. The calibration procedure is shown in Section 4,
where the model is calibrated to the annular configuration. In Section 5, control problems with feedback control are analyzed
for an ideal case and a limited case with local actuation. Results are compared to the experimental results and the cause of the
limitation of the control is discussed. Finally concluding remarks are addressed in Section 5.
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2. Thetoy model

To fill the lack of understanding in how the control method influences the system, a simple model problem was formulated.
By limiting the number of modes to the base tones and the first harmonics and roughly assuming the other spatial profiles, we
obtained a set of ordinary differential equations by integrating the system equation following the idea of weighted residual. The
model is formulated to show the basic features of the system such as standing/traveling wave structures and supercritical Hopf
bifurcation.

2.1. Governing equations

The geometry of the system, as shown in Fig. 1, is a three-dimensional liquid cavity. The surface on the right side of the
figure (y = 0) is the free surface. The intention is to model the convection in axisymetric geometries and compare the results
with available experiments as well as numerical simulations, and hence periodic boundary conditions are given to the boundaries
in x-direction(x =0, L). The aspect ratiad,, defined as the ratio of the width to the height of the z section,R/H, is set
to unity throughout the current report. Thermocapillary convection is driven by imposing the temperature gradient on the free
surface by heating the top wall = H) and cooling the bottom walk = 0). The temperature difference is defined as,

AT=T(z=H)—-T(z=0)>0. Q)
The surface tension is considered to be a linearly decreasing function of the temperature,
o =09 —y(T —To), (2

wherey is a positive constant. This means that the flow will be driven from top to bottom on the free surface.
The fluid is treated as a three-dimensional incompressible Newtonian liquid. Therefore, the flow is governed by the incom-
pressible Navier—Stokes equations, energy equation and continuity equation,

au Pr 2
Lu=—+4+Uu-Vu+Vp— —Vau=0, 3
W=-"+ +Vr-va 3
36 1 _5
M@®)=—+u -V — —V?9=0, 4
©)=-+ M 4
V-u=0. (5)
These equations have been nondimensionalised using the [Engtmperature differencAT, velocity scale,
AT
v=""2 ®)
"
and time scale,
H
t=—, 7
o @)
wherepu is the dynamic viscosity. The nondimensional parameters appearing abdva arelPr defined as,
ATH
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Fig. 1. Geometry.
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wherea andv are the thermal diffusivity and kinematic viscosity, respectively. The equations are subjected to the boundary
conditions,

u=0, 6=0 atz=0, (10)
u=0, 6=1 atz=1, (11)
9 90 9 90 06
Lo u=0 B2 — =¢q(x,2) aty=0, (12)
dy  ox Jdy 0z ay
90
u=0, —=0 aty=A4,, (13)
ay

wheregq is the nondimensional heat flux which represents the control perturbation. The boundariesOaandL/H are
subjected to periodic boundary conditions,

u(x=0)=u(x =L/H), O(x=0)=6(x=L/H). (14)
2.2. Formulation of the toy model

In this section, the derivation of the toy model is demonstrated. The variables were separated into mean and disturbances as

u(x,y,z,t) =u'(x,y,z,10), (15)
v(x, Y, 2,0) =V (y,2) +v'(x, y,2,1), (16)
wx,y, z,0) =W(y,2) +w'(x,y,2,10), 7
0(x,y,2.) =0O(y,2) +6'(x,y,2,1). (18)
The profiles of® (y, z) andW (y, z) are approximated as
W(y,2) =4{—8exp<—§) +52exp(—y)}z(1—z), 19)
2
@(y,z)zz—i—aexp(—(%) >z(1—z). (20)

The W profile in they-direction was meant to have the maximum shear stress at the bounga@y The mean temperature
profile in they-direction was chosen to have zero gradient at 0. This should be also relevant for the controlled case since
we intend to control only the disturbancesis a free parametes.andéy represent the thicknesses of the viscous and thermal
boundary layers, respectively. They can be related by a straightforward scaling analysis as

)
dr=—. 21
T= e (21)
Furthermore, based on the scaling analysis of Canright [17], we assume
Ma\ /3
Sd=\— . 22
( Pr ) (22)

As pointed out by Canright [17], this scaling loses accuraciralsecomes high, since the length scale along the free surface

decreases due to the fact that more temperature change occurs in a smaller region. In the current report, this scaling was simply

adopted since the-profile of the mean temperature was modelled to have a smooth profile over the whole domain.
SubstitutingW to the continuity equation, we obtain

V(y,2) = 452exp<—§><2z — 1) — 4% exp(—y)(2z — D). (23)
Solving Egs. (3)—(5) aty, z) = (0, 1/2) for mean values of the variables using Egs. (19)—(23), we obtain
_ 153
g o= Dé"Ma (24)
45 + Pr

Here, for the sake of simplicity, the pressure is assumed to be,

p=0. (25)
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The simplification is encouraged by the fact that the velocity profiles are modeled to satisfy continuity. Of course, more careful
consideration on the treatment of the pressure term could well contribute to further modification of the toy model, but the
essential physics of the convection could still be captured.

The disturbances= {u’, w’, #’} are expanded to one pair of fundamental modes (sine and cosine) and two pairs of harmonic
modes with different radial profiles as

S(x,y,z,t) = K{Ssl(t) Sin(2nmx) + S, 1(t) Coianrx)}f(y)g(z) (26)
+ 1c{Ss 2(1) Sin(4n7x) + 5, 2(1) cotdnm )} f (1)%g(2)?
{2000 SINART) +5 200 cOXAT | £ (%80 KL (27)
wheresg = {”%,k’ w//S,k’ %’k}, B =s,candk = 1,2, 2a. The profiles of the fluctuations are given as
f) = eXp<—§>, (28)
g(2)=4z(1-72). (29)

We assumd. = H without a loss of generality. The-profiles are modeled to have maxima on the free surface for sake of
simplicity. In reality, as shown by Preisser et al. [7], the peak of the fluctuation should be located in the interior. The @pofile
is designed to have a maximumzat 1/2. Note that there are two pairs of harmonic modes with diffexgmiofiles; ones with
symmetricz-profile and the others with asymmettigprofiles with respect ta = 1/2. Hereafter, we call the first/second pairs
symmetric/asymmetric harmonic modes. This is to capture the production in the nonlinear convective terms which turns out to
be essential to reproduce the oscillations.

v/(x,y, z,t) can be obtained from the continuity equation as,

y

I i

U/(x,y,z,t)z—/ ou'(x,§,2) + ow'(x,§,2) . (30)
ax 9z

0

Egs. (3)—(5) are integrated over the entire volumg following the method of weighted residual as

/(f)i(x,z)L(U)dvo:O (i=1,...,6), (31)
Vo

/(j)i(x,z)M(G)dvg:O (i=1...6). 32)

Vo

whereg; (x, z) are the test functions,

¢1(x, z) =sin2nrx)g(2), ¢2(x,2) =co92nmwx)g(2),
$3(x, 2) = sin(4nmx)g(2)2, d4(x, 2) = cogdnmx)g(2)?,
$5(r.2) = sin(4nnx>g(z>%), Por.2) = cos(4nnx>g(z)%). (33)

Carrying out the integrations using the boundary conditions (10)—(13) and substitutirig we obtain a set of 18 nonlinear
ordinary differential equations,
dx

5 = V. (34)

for 18 variables,
T
X= (es,ls ec,la 95,2’ 96,27 05,2(17 9c,2a’ Usg 15 -5 Uc2q5 W 15--+> wc,2u) - (35)

The calibration functiorD(x) is added as,

Z—TZN’(XHD(X):N(X), (36)

where,

D=(dy1,dc1,dg 2, dc.2,dg 24,d¢.24,0,...,0)7, (37)
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containing cubic terms,

dy.1=r16] 161, de1=r16, 1672,
dg o= r29s/’2952, dc’z = r20£y2952,
dy 2a =120, 5,052, de.oq =120, 5,052
where
0 =0,3+02°  05=05+05%.  65,=0%,+0.5)°. (38)

r1 andr; are the calibration constants which can be tuned to calibrate the toy model to match the bifurcation characteristics of
the ones measured experimentally or numerically in various systems with different geometries. The details of the calibration
procedure are discussed in Section 4. The thickness of the disturbancediisfieughly guessed to have a physically realistic
value. We se$’ = 0.33 which was used throughout the current report. The mode numbas simply set to 1.

3. General features of the model system without control

In this section, the computational results of the model equations for aPhidtuid flow without control(¢ = 0) is pre-
sented. Some of the basic features of the instability observed in earlier reported works carried out in axisymetric geometries
are confirmed. Here, a typical case is shown mainly using the parameter settimg, r») = (14, —2.1, —50), however, the
qualitative features shown here should be applicable to a wider range of these parameters.

3.1. Wave structure

There is an ongoing discussion about the onset wave structure of the oscillation. Many cases for different fluids and geome-
tries are reported, which do not show agreement. In half-zone models, Savino and Monti [18] showed, performing a numerical
simulation forPr = 30 andA, = 0.5 and 1, that the instability arises as a standing wave at the onset of the oscillation due to
the symmetry of the problem but when a fully established periodic state is reached, the solution will be a traveling isave.
the aspect ratio defined as the ratio of the height to radius of the liquid bridge. They mention that this is in agreement with
the microgravity experiment of Monti et al. [19]. F&r = 4 and 7 andA, ranging from 0.5 to 1.3, Leypoldt et al. [8] also
reported that the traveling wave is the only stable solution. On the other hand, Ueno et al. [9] performed an experiment varying
the viscosity of Silicone oib = 1-5 ¢St and the aspect ratip = 0.3 — 2.0 and found that the onset structure of the oscillation
was standing.

In annular configurations, Kamotani et al. [20] observed, using a fluidwitt? ¢St in microgravity experiments for differ-
entA,, that the oscillation is traveling at the onset and becomes standMg &sincreased. The same trend has been observed
in a numerical simulation by [21] faPr = 17. On the contrary, Lavalley et al. [22] showed in their numerical simulation that
the onset oscillation is standing and becomes travelindascreases. Carrying out the experiment with the same geometry
as Lavalley et al. [22], Shiomi and Amberg [14] observed only traveling waves for a ranida @fith some uncertainty in
judgment of the structure close to the onset. We thus observe that there is no consensus in the literature on the selection of
wave structures. This, however, obviously depends sensitively on such parameters as aspect ratio, volume ratio, heat conductior
through the free surfac®r and grid resolution in case of numerical simulation.

The behavior of the current model system shows agreement with Savino and Monti [18] and Leypoldt et al. [8]. The model
equations exhibit only a traveling wave as a stationary solution. However, depending on the initial condition and the strength of
nonlinearity, it does become standing as a quasi-stationary state. The subfigures in Fig. 2 show typical pictures of time histories
of oscillation in the weakly nonlinear regime, Wheﬁ’el and@’ qpare marked with solid and dotted lines, respectively. As seen

in the left subfigure, when the initial condition is small enough1 anda’ qare in phase, hence the oscillation is standing.
Both the amplitude and the phase remains almost constant for more than 200 periods of oscillation, where the duration of one
period is typically about 2 seconds. In the figures, the time is dimensionalized using the physical properties from the experiment
of Shiomi et al. [13,14]. Eventually, the oscillation begins to travel and reaches the stationary traveling state as observed in the
right subfigure. Here@;l and@é’1 oscillate with the same amplitude and2 phase difference, which suggests the traveling
wave.

The transition from standing to traveling wave can be best described by computing the amplitudes of two waves propagating
in the opposite direction. Here, we defidg ;. (r) andA; _(¢) as the amplitudes of thigh mode wave propagating in positive
and negative directions along theaxis. In Fig. 2, the time histories of the 4 (r) andA; _(+) decomposed frorﬁ’ 1 ande/
(Appendix) are denoted by dotted-dashed and dashed lines, respectively. It can be observed that after ‘the |n|t|al growth of
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Fig. 2. Amplitude of waves of the fundamental modes with opposite direction of propagatierdiirection. (—, ——, — - —) denote
(A1), Aj (), Aj —(1)). (Ma, Pr,r1) = (160Q 14, —2.1).

oscillation, the amplitudes of the standing wave show almost no change until area®0. Then through the transient
state, the oscillation gradually turns into a pure traveling wave, where the amplltudé§ ahd@é become the same. This
observation of quasi-stationary state supports the results reported by Monti et al. [19]. The total amplitudgiofrtbde
oscillation is defined as

A = A+ 02+ A ()2, (39)

which is marked by a solid line in the figure.

For the above case, the local maxima and minima of the harmonic modes are plotted in Fig. 3. Solid, dashed, dotted and
dot dashed lines denote the local maxima and minime gf ec PCH 2 andé’ O 2 respectively. Among the harmonic terms,

2 ande’ .  follow the trends of fundamental ones, Wheré§1§a and@’ .2 exhibit the mean value deviating from zero. This
|mp||es that there is a mean heating due to the nonlinear |nteract|0n in the system equations.

3.2. Bifurcation characteristics

In previous numerical and experimental reports on the oscillatory thermocapillary convection in various geometries such
as half-zone models [8,15] and annular configurations [22,13,14], it was observed that the flow shows a supercritical Hopf
bifurcation where the amplitude of the oscillation increases linearly with the square rodh die weakly nonlinear regime.
€ is the over-critical parameter defined as,

_ Ma — Magr
Macr

As discussed by Leypoldt et al. [8], if the amplitudes of the two traveling waves with opposite rotation were to take a form of
the general Ginzburg-Landau equations, wHen>> A_ or A4 < A_ as seen in the current study; should exhibit Hopf
bifurcation in the weakly nonlinear limit. As the nonlinearity becomes stronger, the data fall off from the curve. Especially, in
Leypoldt et al. [8], it is shown that these trends can be seen in all the harmonic modes containing significant energy.

These qualitative trends are well recreated by the toy model as shown in Fig. 4, where typical bifurcation curves computed
by the model equations are depicted. The solid lines mark the amplitude of the fundamental and symmetric harmonic modes,
Aq andAj. A; is a time-dependent variable, however since in the current report it is mostly used to compute the amplitudes

(40)



J. Shiomi, G. Amberg / European Journal of Mechanics B/Fluids 24 (2005) 296-313 303

25 T T T

2

1.5

1

3
- 05 i
2
£
£ 0 1
< NN
\
-05F \ .
_1 |- .
_1.5_ -
_2 1 L 1 Il
0 400 800 1200 1600
time[sec]
Fig. 3. Maxima and minima of the oscillation of the harmonics modes, ——,---, — - —) denote the local maxima and minima of
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Fig. 4. Bifurcation diagram. (—), amplitudes computed by the model (#fap:bottom: A5). (— - —), Hopf bifurcation curve fitted in weakly
nonlinear regime(Pr, r1, rp) = (14, —2.1, —50).

for saturated oscillations, the time dependence is omitted unless it is specified. For the harmonic modes, the amplitudes were
computed for only the symmetric modes as, in the experiment, temperature signals were measured at the midg2p
where the asymmetric modes have nodes.

Magr was determined by extrapolating the bifurcation curveiio= 0. For this particular casdja was 1547. The dotted-
dashed lines represent the least square fits to the data in the weakly nonlinear ¢sgihé/Vhene « 1, the result is in a good
agreement with the Hopf bifurcation where the squared amplitude increases linearity, With trends in how the computed
amplitudes go off from the fitted lines at~ 0.2 and how the slope of the bifurcation curve increases for higher modes agree
well with the results of Leypoldt et al. [8].

When the value o€ exceeds a certain valye ~ 0.5), the state bifurcates to a quasi-periodic oscillation. Fig. 5(a), depicts
the three-dimensional return map constructed from time series of temperature sigeaDdbr ¢ = 0.81. The delay dis set
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Fig. 5. (a): A three-dimensional return map@st0.t), e = 0.75, (b): A two-dimensional sectiof@’ (0, t + 2 dt) = 0) of the return map.

to be 0.118 seconds in physical time. The map has a form of torus as can be better understood from a two-dimensional section
of the three-dimensional map shown in the Fig. 5(b). The section is takeat+ 2dr) = 0. The result is contradictory

to the experimental observation of Shiomi et al. [15] in a half-zone where the scenario to chaos was shown to be through
period-doubling.

In Fig. 4, when the oscillation becomes quasi-periodic, the amplitdgesannot be computed as Eq. (39), hence in this
regime,A; was computed as the square root of summation of varian@li’escﬁndel.”c. This was also done when computing the
amplitudes of the controlled oscillation. It should be noted that the bifurcation characteristics of the fundamental and harmonic
modes in the periodic regime is independentofit is only r; which determines the slope of the Hopf bifurcatiepgoverns
the bifurcation characteristics of the second bifurcation to the quasi-periodic state in terms of the critical vahreddhe
volatility of the disturbance.

4. Modeling theflow in annular configurations

The model equations are provided with the third order terms in Eq. (37) to be calibrated to match the bifurcation curves
of the given system. In this report, oscillatory thermocapillary convection in an annular configuration is modeled. The target
system is the experiment performed by Shiomi and Amberg [14].

4.1. The annular configuration

In an annular configuration, first suggested by Kamotani et al. [23], a generic flow of a character similar to that found in the
float zone method can be studied. As shown in Fig. 6, in the experiment carried out by Shiomi and Amberg [14], the system is
an open cylindrical container filled with liquid to have a flat free upper surface. A heated pipe with a prescribed temperature is
located on the axis of the container. The outer cylindrical wall is maintained at a lower temperature. Thermocapillary convection
is thus driven by imposing a radial temperature gradient on the flat free surface. The bottom temperature condition is adiabatic.
In experiments, this geometry has one advantage that, having the free surface perpendicular to gravity, it can be kept flat, thus
better quantitative analysis can be achieved. The aspectAatimtio between the height of the fluid and the radius of the
cell R, was kept at unity. The ratio of the diameter of the heated Rip& R is H, = 0.21. More details of the apparatus and
procedure of the experiment are given in Shiomi and Amberg [14].

4.2. Calibration

To give freedoms to the model equations to follow the bifurcation characteristics of the given system, third order terms (37)
were added to the model equations. As stated earlier, the valugdecides the slope of the bifurcation curves and, more
importantly, the ratio between the magnitude of fundamental and harmonic modes. The vaglg®wérns the stability char-
acteristics of the second bifurcation to the quasi-periodic state namely criticality afd $fiée of the bifurcation. Therefore,
the calibration was mainly done by determining the optimal valug pfvhich minimizes the error,

€0
/ (V) — o) de, (a1)
0

wherey, andy. are the ratio of energy of the first harmonic to fundamental frequency of the toy model solution and the
experiment, respectivelyg is the maximume explored in the experimeritg = 0.42). In Fig. 7, y, andy, are shown for
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Fig. 6. Annular configuration.

0.02 T T T —
0.018r s
0.016r . Iy
0.014r e

0.012r .

0.008r ‘
0.006 *

0.004r

0.002

0 01 02 03 0.4 0.5 0 : : : :
€ 0 0.1 0.2 0.3 0.4 0.5
€
Fig. 7. Calibration of the toy model using the energy ratio of fun-
damental to first harmonic frequengy,. Solid line: the calibrated

toy model. Circles: experimental data [14].

Fig. 8. Bifurcation curves. Solid line: the calibrated toy model. Stars:
the scaled experimental data [14]. Dash-dotted ijt%cx €.

a range ofe. The value ofr; is determined so that the quasi-periodic state exhibits realistic volatility. In the present study,
rp = —50 is chosen.
In order to compare the bifurcation curve of the model with that of the experiment, the experimental data are scaled as

0,(x, 1) = BO), (x,1), (42)

whered;, is the local free-surface temperature of the fundamental mode measured in the experinfeig armbnstant. It is

natural that the experimental data need to be scaled to be compared to the solution of the model problem since the experiment
measures the local temperature while the solutions to the model are integrated in space. Of course, main part of the discrepancy
in the quantities is due to the fact that the modeltisyaln fact, this scaling is not necessary if one only considers the application

to control problem since it will be overshadowed by the control gain, however, it is still beneficial to compare two results in
terms of the the shape of bifurcation curve as shown in Fig. 8. In the fig@résolid line) is plotted together with the squared
amplitude of¢, for g = 8.45 (stars). The dotted-dashed line represents the Hopf bifurcation curve as in Fig. 4. Very good
agreement with the experimental results can be observed. Note that the only parameters modified for the calibration are the
constantgq andg, hence it is fair to say that the good agreement in the entire ranges @iwing to the fact that the qualitative
features of the phenomenon are captured in the model system.

5. Linear feedback control of the nonlinear system

In the current report, we intend to identify the cause of the limitation of the control observed in the experiment of Shiomi
and Amberg [14], which is accompanied with an increase in the amplitude of the first overtone far (ar@el5). Following
the idea of the proportional control performed in our previous experimental works, we apply a linear feedback law,
q(xi +dx) =—G16'(x;), (43)

wherex;, represent the sensor positions andsithe distance from the sensor to the corresponding actuator alongatkis.
G1 is the linear control gain. In the experiments; i determined so that the temperature signals at the sensor and the
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corresponding actuator are in phase. With this, a simple cancellation scheme can be constructed. Two sensor/actuator pair:
(controllers) were used in the experiments to cover the two degrees of freedom in azimuthal rotation of the wave. Since, in the
current computation, it is possible to place a sensor and a heater at the same location, we can set thexvadu@ witdout

losing the correspondence to the experiments.

5.1. Linear control problem
A formulation of a linearized system enables us to treat the problem in rather classical manner of the linear control theory.

On solving the equation system (31) and (32) for the first otdér« «), a linear control problem of the system equation can
be formulated as,

d
y=Cx, (45)

whereA| is an 18x 18 system matrix containing elements which are functionslaf In the linear system, the fundamental
modes and harmonic modes are decoupled and so as the sine and cosine modes. The input matrix

By
- {_} (@6)
0

and inputq are determined by the design of the actuatiBp.is a submatrix oB representing the input to the temperature
equationsy is the observed measurements deduced from the state xemtoording to the matriC.

5.2. Feedback control

The linear feedback control scheme can be written as
q=Ky, (47)
where the linear gaiK is a square matrix with dimension of the measurements. Here, based on the previous experiments, we
consider a simple casé = G1l, wherel is the identity matrix. Now, the linear system with feedback loop can be written as,
dx
T [AL — G1BIC]x. (48)
5.3. Ideal control

Before exploring the possibility to model the controlled system in the experiments, let us examine the control in more ideal
situation. In this section, we try to exclude the complication caused by the fact that the temperature is measured locally and
control is applied locally in the experiments. Now, we expand the non-dimensional heatifitthke same manner as for the
state variables,

q(x, 2, 1) = [g5.1(1) SIN27x) + g.1(1) 0827x) }g(2) + {5, 2(0) SIN(47x) + g 2(1) COL AT x) | 8 (2)?

: dg(z)
(45,20 ) SINAT) + g 20 (1) COST) 9 2) = (49)
Substituting this into (12) on formulating the linear or nonlinear system gives
q= (‘]s,l»‘Ic,17qs,27qc,2’QS,Zavqc,Za)T‘ (50)

Accordingly,B is an 18x 6 matrix. Inheriting the idea from the experiment to maintain some correspondences, theBmasx
designed so that we act on the equation of each mode only with the perturbation with the same mode. We define three alternatives
for B with diagonal forms oByg; The first one simulates the case where we can modify only the fundamental temperature
modes B[k, k] =0,k =3,...,6). The second one is for the case where we can also modify the symmetric harmonic modes
(Balk, k1 =0, k =5, 6). Finally, the third one for the case where all the temperature modes can be md8ijed

Now, we examine the controllability of the system. When the system can be transfered from any initial condition to any
desired state in a finite time by proper choice of inguthe system is linearly controllable. The criterion is that the rank
of the controllability matrix,I” = raniB, AL B,...,AFB], is a full rank, in other words, the matrix is nonsingular [24].
Similarly, the system is observable if, for givgnandq, the initial state can be deduced. The criterion for this is given by
$2=ranKCT, (ANH2CT,....(AD’CT] to be a full rank.
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Checking the criterion for controllability fd8, ~ B3, we obtain

I'lg=B, =9, (51)
I'lg=, =18, (52)
I'|p=, =18, (53)

independently oMa (0 < € < 0.5). Therefore, at least, modification of both fundamental and harmonic symmetric mode pairs
is necessary for the linear system to be controllable, i.e. to assure the existenadtiofvhich the state can be transfered to
the target state.

The analysis for the observability of the linear system would give the same result. Therefore, if we are to detect one mode
with one sensor for a certain time interval, we would need at least 4 sensors to be able to estimate the initial condition for the
rest of the state variables from the measured data using the linear system.

From the knowledge obtained above, the feedback control can be designed such that measurements and actuation are dor
for only the symmetric modes, i.8 = By. Similarly, the measurements are limited to symmetric modes which corresponds
to the experiment where asymmetric modes cannot be detected with sensors positioned in the midgap. Tis, givesl,
k=1,...,4,and 0 in the other elements.

For the above design of control, the stability of the linear control system (48) can be examined. Consequently, all the
eigenmodes were found to be stable for large enough valu@g.ofhe threshold value af ; increases witlz.

On applying the feedback to the nonlinear system (36) the nonlinear saturated state without control was given as the initial
condition. The resulting performance of the control is characterized by drawing the bifurcation curves for various v@lues of
In Fig. 9, the bifurcation curves fot1, Ay, and(A% + A%)l/2 are shown. It can be observed that all the amplitudes monoton-
ically decrease with increasing;. This shows that with a large enough, the oscillation can be completely suppressed by
the linear control.

2, 42\172
1A

(A

107t

Fig. 9. Bifurcation diagrams of the toy model subjected toitleal control. (a) Fundamental modes, (b) harmonic modes, (c) overall.
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5.4. Feedback control with point heat sources

In the experiment, the control is done by locally measuring and modifying the temperature boundary condition on the free
surface using two controllers. Compared with the previous ideal case, the spatial locality in both measurement and actuation
should cause more complications. To examine the cause of the limitation of the control, the model problem is formulated with
the boundary condition,

Ax )2 Ax )2
q(x,z,z)=q1(t)h(z)exp[—(ﬁ> }+q2(z)h(z)exp[—<x _);2) ] (54)

whereAx represents the length of actuators in the x directiton.is given the value @25, which corresponds to the size of
the actuators used in the experiment. kherofile of the output from the actuator is estimated with a gaussian function. When
carrying out the integration in Egs. (31) and (32), we give diffeteptofiles, 1 (z) = g(z), g(z)? andg(z)dg(z)/dz, for the
fundamental, symmetric harmonic and asymmetric harmonic modes. This is to fiptiodile of the actuation to the wave of
each mode, in order to focus on the examination of the influence of localitydinection. Consequently, we obtaBas a
function ofx; andxp, which is namedp hereafter. The inputs ag=[¢1, g1".

As in the experiment, the temperature is measured at two locatians 0, 1/2, t) andd’ (x2, 0, 1/2, t). We find the matrix
C for this case,

{Cpli. 11, Cpli. 2], Cpli. 3], Cpli, 41} = {sin 27 x;, cos 2rx;, sin4rx;, cos4rx;}, i=1,2, (55)

with 0 elements otherwise. Now, giving = 0.25 andx, = 0.5, which correspond to the optimal positioning of the controllers
report by Shiomi and Amberg [14], we obtaflp[1, 1] = Cp[2,4] =1, Cp[1,4] = Cp[2, 3] = —1 and 0 in the rest of the
elements.

The local feedback can be realized as Eq. (47), where, based on the expekineedgsigned to b& = —G1l with | as
the identity matrix of second order. Our original idea, on desigingvas to target only the fundamental mode, considering
the harmonic modes to be the secondary phenomena resulting from the nonlinear dynamics of the fundamental oscillation. The
non-diagonal elements of the gain matkxwould represent the coupling between the controllers. Since the state variables
and the control do not have the same profiles with the local actuation, it is possible that finite values of non-diagonal elements
can contribute to the efficiency of the opposition. This was investigated by carrying out a simple estimation considering the
opposition of only the fundamental modes (Appendix). Consequently, it was found thatwlith the best opposition can be
considered as diagonal matrix farx = 0.025. Hence, from the symmetry of the systedfnwas designed take the form as
stated above. The same analysis could be carried out for the full linear system including harmonic modes, however, then we
would violate the limit on the number of sensors in the experiment.

5.4.1. Bifurcation curves
For the nonlinear system with the feedback loop, bifurcation curves for different valdes afe plotted in Fig. 10(a)—(c).
In this case, none of the amplitudes show monotonic decrease. As shown in Fig. 10(a), inotakingertain value ok,
A4 decreases until;1 reaches a certain value, and then it increases again. However, the suppression is achieved for all the
parametersz1 ande explored in the current report.
On the other hand, as shown in Fig. 10(b), it was observed that the harmonic modes can be destabilized with eioess
€ < 0.38, the harmonic modes can be attenuated to some extent, byt@sceeds certain valuegp begins to increase with
G1 and eventually exceeds the initial amplitude without control.€=pr0.38, A, shows monotonous increase wih . In this
regime, control has a destabilizing effect on the harmonic modes.
The bifurcation curves shown in Fig. 10(c) reflect the influence of the control on the total energy of the oscillation. For the
examined range of, the total amplitude decreases@s increases from 0. At certain values 6f depending on the value
of €, the amplitude reaches the minima. We define this optimal valug;0éis G1 opt- As G1 exceedsGy opt, the amplitude
monotonically increases.

5.4.2. Overall performance

The overall performance of the control is demonstrated in Fig. 11(a) where the suppression K@fief@#1 op is plotted
for a range ok. The suppression ratip is defined as the ratio of controlled total amplitude to the uncontrolled one. It can be
seen that, in the weakly nonlinear regiiee< 0.28), the control achieves complete suppression of the oscillation, i.8abe
was raised by 28%. Beyond the threshold vaju@creases as the nonlinearity becomes stronger.

The result qualitatively agrees very well with the experiment by Shiomi and Amberg [14] whose corresponding result is
shown in Fig. 11(b). Both show complete attenuation of the oscillation in the weakly nonlinear regime, then a sudden increase
of G4 after reaching the threshold valueseofNote that in the experiment, measurement noise was approximately 10% of the
uncontrolled signals in the weakly nonlinear regime, henc®es not become less than 0.1.
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Fig. 10. Bifurcation diagram of the toy model subjected to the local control. (a) Fundamental modes, (b) harmonic modes, (c) overall.
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Fig. 11. The overall performance of the proportional control of (a): model equation system and (b): expeimguggression ratio, the ratio
of amplitude controlled with the optimal gain to uncontrolled.
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The increase of is accompanied with the amplification of the harmonic modes. In order to compare the current model
system with the experiment in this respect, the energy ratios in harmonic modes for the toy model and the experiment are plotted
in Figs. 12 (a) and (b), respectively. In Fig. 12(&y and E0, represent the energy in the harmonic modes of the controlled
(with G opt) and uncontrolled oscillation. Similarly, in Fig. 12(d)0ns and Ep¢ are the energies of harmonic frequency. If we
assume that, in the experiment, mostRfi;,; and Es belong to the oscillation with harmonic wavenumber, good qualitative
agreement could be obtained between the two results, where the energy of the harmonic mode with control rapidly increases at
certaine and reaches almost triple the original value without control.

It is possible to comment on the cause of the amplification of the harmonic modes by observing the power spectra of
the controlled oscillation. In Fig. 13, the power spectra of fundamental and symmetric harmonic modes of controlled oscilla-
tion are plotted together with those of uncontrolled ones. The spectra for controlled/uncontrolled oscillations are depicted by
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Fig. 12. Energy ratio in the harmonic (a): modes of model equation system, and (b): frequencies of the expetjnantst, are the value
with G1,opt, WhereEOpt and E02 is the value without control.
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Fig. 13. Spectra of the fundamental (top) and harmonic (bottom) modes with (solid line) and without (dashed line) control.

solid/dashed lines. The spectra of asymmetric harmonic modes are omitted since they are the same as symmetric harmonic
modes. With control, as the attenuation of the energy can be seen on the original fundamental and harmonic frequencies which
respectively belong to fundamental and harmonic modes, there is another peak in the spectrum of the harmonic modes at the
frequency of 1.78 Hz. Since this is not an overtone of any of the original temporal modes, it should be the result of linear
destabilization of the harmonic modes.

5.5. Optimal positioning of controllers

For the above casexr{ = 0.25 andxy = 0.5), controlability and observability matrix can be computed Bf_g, =
L2c=c, = 12. Hence the linear system is neither controllable nor observable. Note that, despite this fact, the control still
works in the regime witle < 1. When the influence of the harmonic modes is small, it is more suitable to judge the control-
lability of the system by computing the criterion for a linear system with only fundamental modes. In this case, with the same
local actuation, the resulting system was confirmed to be controllable.idgeases, the energy in the harmonic modes grow
with respect to the fundamental mode (Fig. 4) and the harmonic modes need to be taken into account. Therefore, the control-
lability should be determined based on the full linear system (43). Although, in this regime, the suppression to some extent
can still be obtained, this is purely attributed to the attenuation of the fundamental modes. The loss of controlability of the full
linear system is understandable from the physical picture. Since the original idea in the previous experiment was to target the
fundamental mode, the heaters were positioned with a phase differeng® ¢ control both sine and cosine waves of the
fundamental modes at the same time. However, for the harmonic modes, the phase diffeterienise does not cover two
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Fig. 14. Optimizing the configuration of the controlle; = G1 opt, x2 = 0.5.

degrees of freedom, sine and cosine modes. Therefore the remedy would be to change the heater positions so that the phas
differences for neither of the mode becomes a multipte (. Doing so, we obtaid” = 18 therefore the system is controllable.
With the same argument, system becomes observable with the corresponding change in the sensor position.

In the current study, we limit the control scheme to be a simple one of the experiments where sensor signals are fedback
to paired heaters with common constant control gain. With such a restriction, the satisfaction of the controllability merely
suggest the possibility to act on all the existing linear modes and does not necessarily mean better control. The effectiveness
of control should certainly depend also on the positions of the sensors and heaters. The dependence of the control performanc
on the positioning of the controllers was experimentally investigated by Shiomi and Amberg [14], however it was based on the
measurements of a coarse variation of the parameters corresponéling fa; — x2| = 0.25, 0.375 in the current study. Using
the toy model, the investigation can be carried out with finer parameter variation. Results obtained by applying the feedback
control is shown in Fig. 14, where the overall performance of the control for various valyei®plotted. The value of is
fixed to 05. Rangingsx from 0.2 to 0.375, significant improvement of the performance was achieved with the best performance
whendx = 0.3. With this positioning, the criticality is delayed ¢o~ 0.47.

The result shows a certain agreement with the experiment where control performs bétte£for25 than forsx = 0.375.

The analysis also suggests that we may have jumped over the optimal positioning whenésmiygitige experiment. Of course,

there are some questions of the relevancy of the analysis. For instance, in the experiment, the cause which limits the performance
of the control is not evident. Hence, when varying the positioning of sensors and heaters, it is not clear yet if the limitation is
caused by the appearance of the same wavenumber mode. The selection of the destabilized mode can naturally be depende
on the configuration of the sensors and heaters. However, the fact that the amplification of the harmonic frequency components
observed independently 8% gives rise to a speculation that the newly appearing mode might be always the harmonic one.

6. Conclusions

To fill the lack of understanding in how the proportional control method influences the system, a simple model problem was
formulated. Limiting the number of azimuthal modes to the fundamental and first harmonic modes and roughly assuming the
other spatial profiles, a set of ordinary differential equations was obtained. The model is formulated to show the basic features
of the system such as standing/traveling wave structures and Hopf bifurcation. The model system has open parameters so that i
could be calibrated to the given physical system. Implementing the feedback control to this toy model, we could capture some
of the essential qualitative features of the influence of the control. As shown in Figs. 11 and 12, the suppression ratio increases
rapidly over a certain threshold value©tlue to the destabilization of the harmonic modes.

In spite of the rough estimations made in the derivation of the model system, the model shows very good qualitative agree-
ment with the experimental results, not only for the uncontrolled system but also for the controlled one. The result of this
study suggests that the performance of the linear control with local temperature modification may be limited due to the linear
destabilization of the harmonic modes.

There is a certain discrepancy in the behaviors of the controlled oscillation in current system and the experiments which one
may need to consider before concluding that this study describes the definite cause of the limitation of the control performance.
The linear harmonic mode has its own peak in almost double the overtone frequency of the fundamental mode, which does
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not match the observation in the experiment. It is possible that, in the experiment, the linear harmonic modes and nonlinear
harmonic modes have similar critical frequency, but it is far from certain. Nevertheless the present study points out the possibility
of destabilizing the harmonic modes of the target modes due to the finite length of the actuator though, instinctively, this goes
against the characteristic of this control method where any waves that are in phase at sensor/heater positions were thought to b
suppressed to some extent.

It should be noted that due to the locality of the actuator and coupling of fundamental and harmonic modes, the linear
controllability can be satisfied with fewer actuators than the ideal case. This confirms the practicability of suppression of the
oscillation using the current proportional control method which was applied in the previous experiments without any theoretical
assurance. Optimizing the positioning of the controller in connection with the linear controllability, the control performance
could be improved to a significant extent. The result of the analysis agrees well with that found in experiments and suggests
the possibility of improving the control performance in the experiments by adopting finer parameterization of the controller
positions

In the case demonstrated in the current report, the solution was limited to have only a single fundamental mode for sake
of simplicity. The number of modes can easily be increased by adding more terms in the solution in order to make the model
system applicable to the cases where multiple linear modes appear as in Shiomi et al. [15]. In this case, however, the calibration
process would be difficult since the model would need to be calibrated against the controlled system.
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Appendix. Designing the gain matrix

A general expression of the wave of tite mode traveling/standing in thedirection is,
Gl-/(x, 1) =A; (O)sin2imx — 2w fit +n;1) + A; — (1) SiN2imx + 2 fit +n; 2), (56)

wheren; 1 andn; o are the phases of the positive and negative propagating waves of mode (wavenunaireittion),
respectively, and; denotes the critical frequency of thih mode. The critical frequencieg,, were detected from the peaks
of the power spectra. The temperature signals at the seﬂ?()crg,t), 91.’(x2, 1), ae;(xl, t)/0t andael.’(xz, t)/dt can expressed
as functions ofd; 4 (1), A; — (1), n; 1 andn; 2. Hence, knowing the former 4 variables, the latter ones can be computed.

Now, we intend to compute the linear gain matiwith which the best opposition agair&{tcan be obtained. Inputs are the
two temperature signals of the fundamental oscillation @tx; andx». For the sake of convenience in formulation, Eq. (56)
is rewritten as

4
01(x,0) =Y ALDx; (.1, 67
j=1

where y = {sin[27(x + f11)], cog2x (x + f11)], sin27(x — f1t)],cod2r (x — f11)]}. Assuming that the cancellation of the
disturbance is done by adding the temperature proportional to the surface heat congtiction = ¢|,—1, the objective
function can be written as,

1
J:/(@i—q*)zdx, (58)
0

which is a quadratic function ozi;f andg;. Now we calculate the optimal value with respect to the outputs=1, 2,

aJ
—~ =0. (59)
9qi

Solving the linear equations;; can be expressed as linear functionsm}f. Substituting, x1, x2, Gi(xl, 1), ei(xz, 1),

361 (x1,1)/9r anddby (x2,1)/dt into Aj., the expression is reduced to,

a0 _ 91(%0]
[qz(t)} =K [91()62, ) (60)
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with constant elements in thex22 matrix,K. The time-dependent parts and the time derivatives spontaneously drop out from
the expression. The values kifwere computed for a range ®#f andx, for the given size of the actuator. As a consequence,
the optimalK was found to have diagonal elements several orders higher than the non-diagonal elements.
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