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Abstract

Simple model equations were formulated to examine the influence of linear feedback control on oscillations in therm
lary convection. Limiting the solutions to have a few wavenumbers and roughly assuming the other spatial profiles, th
of equations is reduced to a set of ordinary differential equations. This toy model is able to recreate basic features o
controlled system such as standing/traveling wave structures and bifurcation characteristics. The control was realized
heating and cooling the free surface by linearly feeding back the temperature signals measured in local positions. Imp
the proportional feedback control in this toy model, we could capture some of the essential qualitative features of the
of the control observed in the previous experiments, including the limitation of the control. The formulation of the toy
can be used to gain physical insight in the control problem.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Oscillatory thermocapillary convection is often blamed for detrimental striations in the finished material produced
container-less crystal growth method called floating-zone method [1]. Having the industrial motivation and advanta
carried out in a micro-gravity condition, there have been a growing number of researches reported on the oscillatory th
illary convection in the past decades. Since the first experimental observation of the three-dimensional time-depende
thermocapillary convection by Schwabe and Scharmann [2] and Chun and Wuest [3], many works have been devoted
the mechanism of the instability [4–6] and to reveal the modal structures at the onset of the oscillation and their bif
characteristics in the supercritical regime [7,8]. Recently, flow structures for considerably high Marangoni number (Ma) are
reported, where the flow becomes chaotic and turbulent-like [9].

With the knowledge obtained from those studies concerning the instability mechanism and bifurcation characteri
ultimate goal would be to suppress the oscillation. Our challenge in this report is to stabilize the flow by local modific
heat conduction on the free surface based on continuous feedback control. Some works have been reported on the
oscillatory thermocapillary convection in various geometries.

* Corresponding author.
E-mail addresses:shiomi@mech.kth.se (J. Shiomi), gustava@mech.kth.se (G. Amberg).
0997-7546/$ – see front matter 2004 Elsevier SAS. All rights reserved.
doi:10.1016/j.euromechflu.2004.09.006
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An attempt to stabilize the thermocapillary wave instability in an experiment on a plane fluid layer was made by
al. [10]. The temperature signal and the phase information sensed by thermocouples near the cold end of the laye
forward to control a laser which heated the downstream fluid surface along a line.

A nonlinear control was performed by Petrov et al. [11,12] to stabilize the oscillation in a half-zone model by usin
temperature measurements close to the free surface and modifying the temperature at different local locations. T
constructed a look-up table based on the system’s response to a sequence of random perturbations. A linear contro
appropriate data sets from the look-up table was computed. The control law was updated at every time step to
control law to the nonlinear system. Using one sensor/actuator pair, a successful control was observed at the sens
for Ma ∼ 17750, however infrared visualization revealed the presence of standing waves with nodes at the feedback
and the sensor. This was resolved by adding a second sensor/actuator pair, which allows the control to damp out b
propagating clockwise and counterclockwise, thus standing waves. The performance of the control was reported fo
Ma∼ 15000, where the critical value wasMacr ∼ 14000.

This was followed by studies applying linear and weakly nonlinear control. For an annular configuration, Shiom
[13,14] applied active feedback control based on a simple cancellation scheme. Active control was realized by locally m
the surface temperature using the local temperature measured at different locations fed back through a simple control
two sensor/actuator pairs, a significant attenuation of the oscillation was observed in a range ofMa, with the best performanc
in the weakly nonlinear regime. Applying the control on an oscillation with azimuthal wave number of 3 (mode-3),
regime with weak nonlinearity, the oscillation was suppressed to the background noise level. The experiments also re
limitation of the control. WhenMa is about 15% above the critical value, control fails to achieve complete suppression
oscillation, though a significant attenuation is still achieved. The loss of control is accompanied by an increase in the a
of the first overtones and a modulation in the controlled signal, which may suggest the appearance of another mode
by the control.

Recently, with a similar method, but in a half-zone model, weakly nonlinear control of the oscillatory thermoca
convection is reported by Shiomi et al. [15]. The experiment utilizes a unit aspect ratio liquid bridge where the most da
mode has an azimuthal wave number of 2 when the control is absent. The performance of control was quantified by
local temperature signals and the flow structure was simultaneously identified by flow visualization. With optimal place
sensors and heaters, proportional control can raiseMacr by more than 40%. The amplitude of the oscillation can be suppre
to less than 30% of the initial value up to 90% ofMacr. The proportional control was tested for a period doubling stat
stabilize the oscillation to a periodic state. Weakly nonlinear control was applied by adding a cubic term in the contro
improve the performance of the control and to alter the bifurcation characteristics of the system.

Our earlier experimental works in proportional control have shown not only successful performance but also its limita
the studies in an annular geometry by Shiomi et al. [13,14], it was observed that the proportional control performs wor
nonlinearity of the system becomes stronger. The results suggest that the limitation of control may be due to the appe
the neighboring modes, however, this solely does not explain why the overtones are amplified. There seems to be a me
the controlled system to amplify the overtones. In order to investigate the cause of the limitation and the possibility of a
a toy model was formulated. Here, the intention is to construct a toy model which, at least qualitatively, reproduces im
linear and nonlinear features of the system. For this purpose, limiting the number of azimuthal modes to the fundam
first harmonic ones, and assuming the other spatial profiles, we formulate a set of ordinary differential equations. Cons
implementing the feedback control to this toy model, we could capture some of the essential qualitative features of the
of the control.

The model equations are addressed astoy modelsdue to the extreme simplification based on rather crude assumptions.
a toy, there are possibilities of discrepancies with the actual system which can certainly result in the limitation of the to
for further application. However, such an approach is useful to reduce the complexity of the modeled system and to gro
to the problem. Especially, when certain aspects of the system are targeted, such a toy model can be very valuable.

It should also be noted that the ultimate aim of constructing the model is to utilize it to test more sophisticated
schemes. Some of the available schemes such as the optimal control theory require the system equations to estimat
flow field from limited measurement information and to predict the reaction to the control. Although a more accurate
would contribute to better prediction of the system, thus better performance of control, full simulation of the Navier–
equations could hardly catch up with the real time experiment in most of the flow cases. In low dimensional problems
the current problem and the thermal convection loop presented by Bau and Torrance [16], there is a better chance tha
set of ordinary differential equations can be sufficient, even with fairy strong nonlinearity.

The outline of the paper is as follows. Section 2 describes the formulation of the toy model. In Section 3, for the to
with absence of control, general features of nonlinear dynamics is shown. The calibration procedure is shown in S
where the model is calibrated to the annular configuration. In Section 5, control problems with feedback control are
for an ideal case and a limited case with local actuation. Results are compared to the experimental results and the ca
limitation of the control is discussed. Finally concluding remarks are addressed in Section 5.
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2. The toy model

To fill the lack of understanding in how the control method influences the system, a simple model problem was form
By limiting the number of modes to the base tones and the first harmonics and roughly assuming the other spatial pr
obtained a set of ordinary differential equations by integrating the system equation following the idea of weighted resid
model is formulated to show the basic features of the system such as standing/traveling wave structures and supercr
bifurcation.

2.1. Governing equations

The geometry of the system, as shown in Fig. 1, is a three-dimensional liquid cavity. The surface on the right sid
figure (y = 0) is the free surface. The intention is to model the convection in axisymetric geometries and compare th
with available experiments as well as numerical simulations, and hence periodic boundary conditions are given to the b
in x-direction(x = 0,L). The aspect ratio,Ar , defined as the ratio of the width to the height of they − z section,R/H , is set
to unity throughout the current report. Thermocapillary convection is driven by imposing the temperature gradient on
surface by heating the top wall(z = H) and cooling the bottom wall(z = 0). The temperature difference is defined as,

�T = T (z = H) − T (z = 0) > 0. (1)

The surface tension is considered to be a linearly decreasing function of the temperature,

σ = σ0 − γ (T − T0), (2)

whereγ is a positive constant. This means that the flow will be driven from top to bottom on the free surface.
The fluid is treated as a three-dimensional incompressible Newtonian liquid. Therefore, the flow is governed by the

pressible Navier–Stokes equations, energy equation and continuity equation,

L(u) = ∂u
∂t

+ u · ∇u + ∇p − Pr

Ma
∇2u = 0, (3)

M(θ) = ∂θ

∂t
+ u · ∇θ − 1

Ma
∇2θ = 0, (4)

∇ · u = 0. (5)

These equations have been nondimensionalised using the lengthH , temperature difference�T , velocity scale,

U = γ�T

µ
(6)

and time scale,

t = H

U
, (7)

whereµ is the dynamic viscosity. The nondimensional parameters appearing above areMa andPr defined as,

Ma= γ�T H

µα
, (8)

Pr = ν

α
, (9)

Fig. 1. Geometry.
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whereα andν are the thermal diffusivity and kinematic viscosity, respectively. The equations are subjected to the bo
conditions,

u = 0, θ = 0 atz = 0, (10)

u = 0, θ = 1 atz = 1, (11)
∂u

∂y
= ∂θ

∂x
, v = 0,

∂w

∂y
= ∂θ

∂z
,

∂θ

∂y
= q(x, z) aty = 0, (12)

u = 0,
∂θ

∂y
= 0 aty = Ar, (13)

whereq is the nondimensional heat flux which represents the control perturbation. The boundaries atx = 0 andL/H are
subjected to periodic boundary conditions,

u(x = 0) = u(x = L/H), θ(x = 0) = θ(x = L/H). (14)

2.2. Formulation of the toy model

In this section, the derivation of the toy model is demonstrated. The variables were separated into mean and distur

u(x, y, z, t) = u′(x, y, z, t), (15)

v(x, y, z, t) = V (y, z) + v′(x, y, z, t), (16)

w(x,y, z, t) = W(y, z) + w′(x, y, z, t), (17)

θ(x, y, z, t) = Θ(y, z) + θ ′(x, y, z, t). (18)

The profiles ofΘ(y, z) andW(y, z) are approximated as

W(y, z) = 4

{
−δ exp

(
−y

δ

)
+ δ2 exp(−y)

}
z(1− z), (19)

Θ(y, z) = z + a exp

(
−

(
y

δT

)2)
z(1− z). (20)

TheW profile in they-direction was meant to have the maximum shear stress at the boundaryy = 0. The mean temperatur
profile in they-direction was chosen to have zero gradient aty = 0. This should be also relevant for the controlled case s
we intend to control only the disturbances.a is a free parameter.δ andδT represent the thicknesses of the viscous and the
boundary layers, respectively. They can be related by a straightforward scaling analysis as

δT = δ√
Pr

. (21)

Furthermore, based on the scaling analysis of Canright [17], we assume

δ =
(

Ma

Pr

)−1/3
. (22)

As pointed out by Canright [17], this scaling loses accuracy asPr becomes high, since the length scale along the free su
decreases due to the fact that more temperature change occurs in a smaller region. In the current report, this scaling
adopted since thez-profile of the mean temperature was modelled to have a smooth profile over the whole domain.

SubstitutingW to the continuity equation, we obtain

V (y, z) = 4δ2 exp

(
−y

δ

)
(2z − 1) − 4δ2 exp(−y)(2z − 1). (23)

Solving Eqs. (3)–(5) at(y, z) = (0,1/2) for mean values of the variables using Eqs. (19)–(23), we obtain

a = −2
(δ − 1)δ3Ma

4δ + Pr
. (24)

Here, for the sake of simplicity, the pressure is assumed to be,

p = 0. (25)
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The simplification is encouraged by the fact that the velocity profiles are modeled to satisfy continuity. Of course, more
consideration on the treatment of the pressure term could well contribute to further modification of the toy model,
essential physics of the convection could still be captured.

The disturbancess = {u′,w′, θ ′} are expanded to one pair of fundamental modes (sine and cosine) and two pairs of ha
modes with different radial profiles as

s(x, y, z, t) = κ
{
ss,1(t)sin(2nπx) + sc,1(t)cos(2nπx)

}
f (y)g(z) (26)

+ κ
{
ss,2(t)sin(4nπx) + sc,2(t)cos(4nπx)

}
f (y)2g(z)2

+ κ
{
ss,2a(t)sin(4nπx) + sc,2a(t)cos(4nπx)

}
f (y)2g(z)

dg(z)

dz
, (27)

wheresβ,k = {u′
β,k

,w′
β,k

, θ ′
β,k

}, β = s, c andk = 1,2,2a. The profiles of the fluctuations are given as

f (y) = exp

(
− y

δ′
)

, (28)

g(z) = 4z(1− z). (29)

We assumeL = H without a loss of generality. They-profiles are modeled to have maxima on the free surface for sa
simplicity. In reality, as shown by Preisser et al. [7], the peak of the fluctuation should be located in the interior. The prog(z)

is designed to have a maximum atz = 1/2. Note that there are two pairs of harmonic modes with differentz-profiles; ones with
symmetricz-profile and the others with asymmetricz-profiles with respect toz = 1/2. Hereafter, we call the first/second pa
symmetric/asymmetric harmonic modes. This is to capture the production in the nonlinear convective terms which tur
be essential to reproduce the oscillations.

v′(x, y, z, t) can be obtained from the continuity equation as,

v′(x, y, z, t) = −
y∫

0

∂u′(x, ξ, z)

∂x
+ ∂w′(x, ξ, z)

∂z
dξ. (30)

Eqs. (3)–(5) are integrated over the entire volume,vo, following the method of weighted residual as∫
vo

φi(x, z)L(u)dvo = 0 (i = 1, . . . ,6), (31)

∫
vo

φi(x, z)M(θ)dvo = 0 (i = 1, . . . ,6), (32)

whereφi(x, z) are the test functions,

φ1(x, z) = sin(2nπx)g(z), φ2(x, z) = cos(2nπx)g(z),

φ3(x, z) = sin(4nπx)g(z)2, φ4(x, z) = cos(4nπx)g(z)2,

φ5(x, z) = sin(4nπx)g(z)
g(z)

dz
, φ6(x, z) = cos(4nπx)g(z)

g(z)

dz
. (33)

Carrying out the integrations using the boundary conditions (10)–(13) and substitutingκ = 1, we obtain a set of 18 nonlinea
ordinary differential equations,

dx
dt

= N ′(x), (34)

for 18 variables,

x = (θs,1, θc,1, θs,2, θc,2, θs,2a, θc,2a,us,1, . . . , uc,2a,ws,1, . . . ,wc,2a)T. (35)

The calibration functionD(x) is added as,

dx
dt

= N ′(x) + D(x) = N(x), (36)

where,

D = (d , d , d , d , d , d ,0, . . . ,0)T, (37)
s,1 c,1 s,2 c,2 s,2a c,2a
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ds,1 = r1θ ′
s,1θ ′2

1 , dc,1 = r1θ ′
c,1θ ′2

1 ,

ds,2 = r2θ ′
s,2θ ′2

2 , dc,2 = r2θ ′
c,2θ ′2

2 ,

ds,2a = r2θ ′
s,2aθ ′2

2a, dc,2a = r2θ ′
c,2aθ ′2

2a,

where

θ ′
1 = (θ ′2

s,1 + θ ′2
c,1)0.5, θ ′

2 = (θ ′2
s,2 + θ ′2

c,2)0.5, θ ′
2a = (θ ′2

s,2a + θ ′2
c,2a)0.5. (38)

r1 andr2 are the calibration constants which can be tuned to calibrate the toy model to match the bifurcation characte
the ones measured experimentally or numerically in various systems with different geometries. The details of the ca
procedure are discussed in Section 4. The thickness of the disturbance profileδ′ is roughly guessed to have a physically realis
value. We setδ′ = 0.33 which was used throughout the current report. The mode numbern was simply set to 1.

3. General features of the model system without control

In this section, the computational results of the model equations for a highPr fluid flow without control(q = 0) is pre-
sented. Some of the basic features of the instability observed in earlier reported works carried out in axisymetric ge
are confirmed. Here, a typical case is shown mainly using the parameter setting(Pr, r1, r2) = (14,−2.1,−50), however, the
qualitative features shown here should be applicable to a wider range of these parameters.

3.1. Wave structure

There is an ongoing discussion about the onset wave structure of the oscillation. Many cases for different fluids an
tries are reported, which do not show agreement. In half-zone models, Savino and Monti [18] showed, performing a n
simulation forPr = 30 andAr = 0.5 and 1, that the instability arises as a standing wave at the onset of the oscillation
the symmetry of the problem but when a fully established periodic state is reached, the solution will be a traveling wavAr is
the aspect ratio defined as the ratio of the height to radius of the liquid bridge. They mention that this is in agreem
the microgravity experiment of Monti et al. [19]. ForPr = 4 and 7 andAr ranging from 0.5 to 1.3, Leypoldt et al. [8] als
reported that the traveling wave is the only stable solution. On the other hand, Ueno et al. [9] performed an experimen
the viscosity of Silicone oilν = 1–5 cSt and the aspect ratioAr = 0.3− 2.0 and found that the onset structure of the oscillat
was standing.

In annular configurations, Kamotani et al. [20] observed, using a fluid withν = 2 cSt in microgravity experiments for diffe
entAr , that the oscillation is traveling at the onset and becomes standing asMa is increased. The same trend has been obse
in a numerical simulation by [21] forPr = 17. On the contrary, Lavalley et al. [22] showed in their numerical simulation
the onset oscillation is standing and becomes traveling asMa increases. Carrying out the experiment with the same geom
as Lavalley et al. [22], Shiomi and Amberg [14] observed only traveling waves for a range ofMa with some uncertainty in
judgment of the structure close to the onset. We thus observe that there is no consensus in the literature on the s
wave structures. This, however, obviously depends sensitively on such parameters as aspect ratio, volume ratio, heat
through the free surface,Pr and grid resolution in case of numerical simulation.

The behavior of the current model system shows agreement with Savino and Monti [18] and Leypoldt et al. [8]. Th
equations exhibit only a traveling wave as a stationary solution. However, depending on the initial condition and the st
nonlinearity, it does become standing as a quasi-stationary state. The subfigures in Fig. 2 show typical pictures of time
of oscillation in the weakly nonlinear regime, whereθ ′

s,1 andθ ′
c,1 are marked with solid and dotted lines, respectively. As s

in the left subfigure, when the initial condition is small enough,θ ′
s,1 andθ ′

c,1 are in phase, hence the oscillation is standi
Both the amplitude and the phase remains almost constant for more than 200 periods of oscillation, where the durati
period is typically about 2 seconds. In the figures, the time is dimensionalized using the physical properties from the ex
of Shiomi et al. [13,14]. Eventually, the oscillation begins to travel and reaches the stationary traveling state as observ
right subfigure. Here,θ ′

s,1 andθ ′
c,1 oscillate with the same amplitude andπ/2 phase difference, which suggests the trave

wave.
The transition from standing to traveling wave can be best described by computing the amplitudes of two waves pro

in the opposite direction. Here, we defineAi,+(t) andAi,−(t) as the amplitudes of theith mode wave propagating in positiv
and negative directions along thex-axis. In Fig. 2, the time histories of theAi,+(t) andAi,−(t) decomposed fromθ ′

s,1 andθ ′
c,1

(Appendix) are denoted by dotted-dashed and dashed lines, respectively. It can be observed that after the initial
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Fig. 2. Amplitude of waves of the fundamental modes with opposite direction of propagation inx-direction. (—,−−,− · −) denote
(A1(t),Ai,+(t),Ai,−(t)). (Ma,Pr, r1) = (1600,14,−2.1).

oscillation, the amplitudes of the standing wave show almost no change until aroundt = 700. Then through the transie
state, the oscillation gradually turns into a pure traveling wave, where the amplitudes ofθ ′

s,1 andθ ′
c,1 become the same. Th

observation of quasi-stationary state supports the results reported by Monti et al. [19]. The total amplitude of theith mode
oscillation is defined as

Ai(t) =
√

Ai,+(t)2 + Ai,−(t)2, (39)

which is marked by a solid line in the figure.
For the above case, the local maxima and minima of the harmonic modes are plotted in Fig. 3. Solid, dashed, d

dot-dashed lines denote the local maxima and minima ofθ ′
s,2, θ ′

c,2, θ ′
s,2 andθ ′

c,2, respectively. Among the harmonic term

θ ′
s,2 andθ ′

c,2 follow the trends of fundamental ones, whereasθ ′
s,2a

andθ ′
c,2a

exhibit the mean value deviating from zero. Th
implies that there is a mean heating due to the nonlinear interaction in the system equations.

3.2. Bifurcation characteristics

In previous numerical and experimental reports on the oscillatory thermocapillary convection in various geometr
as half-zone models [8,15] and annular configurations [22,13,14], it was observed that the flow shows a supercriti
bifurcation where the amplitude of the oscillation increases linearly with the square root ofε in the weakly nonlinear regime
ε is the over-critical parameter defined as,

ε = Ma− Macr

Macr
. (40)

As discussed by Leypoldt et al. [8], if the amplitudes of the two traveling waves with opposite rotation were to take a
the general Ginzburg–Landau equations, whenA+ � A− or A+ � A− as seen in the current study,A1 should exhibit Hopf
bifurcation in the weakly nonlinear limit. As the nonlinearity becomes stronger, the data fall off from the curve. Espec
Leypoldt et al. [8], it is shown that these trends can be seen in all the harmonic modes containing significant energy.

These qualitative trends are well recreated by the toy model as shown in Fig. 4, where typical bifurcation curves c
by the model equations are depicted. The solid lines mark the amplitude of the fundamental and symmetric harmon
A andA . A is a time-dependent variable, however since in the current report it is mostly used to compute the am
1 2 i
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Fig. 3. Maxima and minima of the oscillation of the harmonics modes.(—,−−, · · · ,− · −) denote the local maxima and minima
(θ ′

s,2, θ ′
c,2, θ ′

s,2, θ ′
c,2). (Ma,Pr, r1) = (1600,14,−2.1).

Fig. 4. Bifurcation diagram. (—), amplitudes computed by the model (top:A1, bottom:A2). (− · −), Hopf bifurcation curve fitted in weakly
nonlinear regime.(Pr, r1, r2) = (14,−2.1,−50).

for saturated oscillations, the time dependence is omitted unless it is specified. For the harmonic modes, the amplitu
computed for only the symmetric modes as, in the experiment, temperature signals were measured at the midgap(z = 1/2)

where the asymmetric modes have nodes.
Macr was determined by extrapolating the bifurcation curve toA1 = 0. For this particular case,Ma was 1547. The dotted

dashed lines represent the least square fits to the data in the weakly nonlinear regime,ε � 1. Whenε � 1, the result is in a good
agreement with the Hopf bifurcation where the squared amplitude increases linearity withε. The trends in how the compute
amplitudes go off from the fitted lines atε ∼ 0.2 and how the slope of the bifurcation curve increases for higher modes
well with the results of Leypoldt et al. [8].

When the value ofε exceeds a certain value(ε ∼ 0.5), the state bifurcates to a quasi-periodic oscillation. Fig. 5(a), de
the three-dimensional return map constructed from time series of temperature signal atx = 0 for ε = 0.81. The delay dt is set
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Fig. 5. (a): A three-dimensional return map ofθ ′(0.t), ε = 0.75, (b): A two-dimensional section(θ ′(0, t + 2dt) = 0) of the return map.

to be 0.118 seconds in physical time. The map has a form of torus as can be better understood from a two-dimension
of the three-dimensional map shown in the Fig. 5(b). The section is taken atθ(0, t + 2dt) = 0. The result is contradictor
to the experimental observation of Shiomi et al. [15] in a half-zone where the scenario to chaos was shown to be
period-doubling.

In Fig. 4, when the oscillation becomes quasi-periodic, the amplitudesAi cannot be computed as Eq. (39), hence in
regime,Ai was computed as the square root of summation of variance ofθ ′

i,s
andθ ′

i,c
. This was also done when computing t

amplitudes of the controlled oscillation. It should be noted that the bifurcation characteristics of the fundamental and h
modes in the periodic regime is independent ofr2. It is only r1 which determines the slope of the Hopf bifurcation.r2 governs
the bifurcation characteristics of the second bifurcation to the quasi-periodic state in terms of the critical value ofε and the
volatility of the disturbance.

4. Modeling the flow in annular configurations

The model equations are provided with the third order terms in Eq. (37) to be calibrated to match the bifurcation
of the given system. In this report, oscillatory thermocapillary convection in an annular configuration is modeled. Th
system is the experiment performed by Shiomi and Amberg [14].

4.1. The annular configuration

In an annular configuration, first suggested by Kamotani et al. [23], a generic flow of a character similar to that foun
float zone method can be studied. As shown in Fig. 6, in the experiment carried out by Shiomi and Amberg [14], the s
an open cylindrical container filled with liquid to have a flat free upper surface. A heated pipe with a prescribed tempe
located on the axis of the container. The outer cylindrical wall is maintained at a lower temperature. Thermocapillary co
is thus driven by imposing a radial temperature gradient on the flat free surface. The bottom temperature condition is
In experiments, this geometry has one advantage that, having the free surface perpendicular to gravity, it can be kep
better quantitative analysis can be achieved. The aspect ratioAr , ratio between the height of the fluidH and the radius of the
cell R, was kept at unity. The ratio of the diameter of the heated pipeRh to R is Hr = 0.21. More details of the apparatus a
procedure of the experiment are given in Shiomi and Amberg [14].

4.2. Calibration

To give freedoms to the model equations to follow the bifurcation characteristics of the given system, third order te
were added to the model equations. As stated earlier, the value ofr1 decides the slope of the bifurcation curves and, m
importantly, the ratio between the magnitude of fundamental and harmonic modes. The value ofr2 governs the stability char
acteristics of the second bifurcation to the quasi-periodic state namely criticality and the∂A2/∂ε of the bifurcation. Therefore
the calibration was mainly done by determining the optimal value ofr1, which minimizes the error,

ε0∫
0

(γ ′
e − γe)

2 dε, (41)

whereγ ′
e and γe are the ratio of energy of the first harmonic to fundamental frequency of the toy model solution a

experiment, respectively.ε is the maximumε explored in the experiment(ε = 0.42). In Fig. 7, γ ′ andγ are shown for
0 0 e e
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Fig. 7. Calibration of the toy model using the energy ratio of fun-
damental to first harmonic frequency,γe . Solid line: the calibrated
toy model. Circles: experimental data [14].

Fig. 8. Bifurcation curves. Solid line: the calibrated toy model. Sta
the scaled experimental data [14]. Dash-dotted line:A2

1 ∝ ε.

a range ofε. The value ofr2 is determined so that the quasi-periodic state exhibits realistic volatility. In the present
r2 = −50 is chosen.

In order to compare the bifurcation curve of the model with that of the experiment, the experimental data are scale

θ ′
e(x, t) = βθ ′

m(x, t), (42)

whereθ ′
m is the local free-surface temperature of the fundamental mode measured in the experiment andβ is a constant. It is

natural that the experimental data need to be scaled to be compared to the solution of the model problem since the e
measures the local temperature while the solutions to the model are integrated in space. Of course, main part of the d
in the quantities is due to the fact that the model is atoy. In fact, this scaling is not necessary if one only considers the applic
to control problem since it will be overshadowed by the control gain, however, it is still beneficial to compare two re
terms of the the shape of bifurcation curve as shown in Fig. 8. In the figure,A2

1 (solid line) is plotted together with the squar
amplitude ofθ ′

e for β = 8.45 (stars). The dotted-dashed line represents the Hopf bifurcation curve as in Fig. 4. Ver
agreement with the experimental results can be observed. Note that the only parameters modified for the calibratio
constantsr1 andβ, hence it is fair to say that the good agreement in the entire range ofε is owing to the fact that the qualitativ
features of the phenomenon are captured in the model system.

5. Linear feedback control of the nonlinear system

In the current report, we intend to identify the cause of the limitation of the control observed in the experiment of
and Amberg [14], which is accompanied with an increase in the amplitude of the first overtone for largeε (> 0.15). Following
the idea of the proportional control performed in our previous experimental works, we apply a linear feedback law,

q(xi + dx) = −G1θ ′(xi), (43)

wherexi , represent the sensor positions and dx is the distance from the sensor to the corresponding actuator along thex-axis.
G is the linear control gain. In the experiments, dx is determined so that the temperature signals at the sensor an
1
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corresponding actuator are in phase. With this, a simple cancellation scheme can be constructed. Two sensor/act
(controllers) were used in the experiments to cover the two degrees of freedom in azimuthal rotation of the wave. Sin
current computation, it is possible to place a sensor and a heater at the same location, we can set the value of dx to 0 without
losing the correspondence to the experiments.

5.1. Linear control problem

A formulation of a linearized system enables us to treat the problem in rather classical manner of the linear contro
On solving the equation system (31) and (32) for the first order(κ2 � κ), a linear control problem of the system equation c
be formulated as,

dx
dt

= ALx + Bq, (44)

y = Cx, (45)

whereAL is an 18× 18 system matrix containing elements which are functions ofMa. In the linear system, the fundamen
modes and harmonic modes are decoupled and so as the sine and cosine modes. The input matrix

B =
[Bθ

0

]
(46)

and inputq are determined by the design of the actuation.Bθ is a submatrix ofB representing the input to the temperatu
equations.y is the observed measurements deduced from the state vectorx according to the matrixC.

5.2. Feedback control

The linear feedback control scheme can be written as

q = Ky, (47)

where the linear gainK is a square matrix with dimension of the measurements. Here, based on the previous experim
consider a simple caseK = G1I, whereI is the identity matrix. Now, the linear system with feedback loop can be written

dx
dt

= [AL − G1BIC]x. (48)

5.3. Ideal control

Before exploring the possibility to model the controlled system in the experiments, let us examine the control in mo
situation. In this section, we try to exclude the complication caused by the fact that the temperature is measured lo
control is applied locally in the experiments. Now, we expand the non-dimensional heat fluxq in the same manner as for th
state variables,

q(x, z, t) = {
qs,1(t)sin(2πx) + qc,1(t)cos(2πx)

}
g(z) + {

qs,2(t)sin(4πx) + qc,2(t)cos(4πx)
}
g(z)2

+ {
qs,2a(t)sin(4πx) + qc,2a(t)cos(4πx)

}
g(z)

dg(z)

dz
. (49)

Substituting this into (12) on formulating the linear or nonlinear system gives

q = (qs,1, qc,1, qs,2, qc,2, qs,2a, qc,2a)T. (50)

Accordingly,B is an 18×6 matrix. Inheriting the idea from the experiment to maintain some correspondences, the matrixB was
designed so that we act on the equation of each mode only with the perturbation with the same mode. We define three a
for B with diagonal forms ofBθ ; The first one simulates the case where we can modify only the fundamental tempe
modes (B1[k, k] = 0, k = 3, . . . ,6). The second one is for the case where we can also modify the symmetric harmonic
(B2[k, k] = 0, k = 5,6). Finally, the third one for the case where all the temperature modes can be modified(B3).

Now, we examine the controllability of the system. When the system can be transfered from any initial condition
desired state in a finite time by proper choice of inputq, the system is linearly controllable. The criterion is that the r
of the controllability matrix,Γ = rank[B,ALB, . . . ,A17

L B], is a full rank, in other words, the matrix is nonsingular [2
Similarly, the system is observable if, for giveny and q, the initial state can be deduced. The criterion for this is given
Ω = rank[CT, (AT)2CT, . . . , (AT)17CT] to be a full rank.
L L
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Checking the criterion for controllability forB1 ∼ B3, we obtain

Γ |B=B1 = 9, (51)

Γ |B=B2 = 18, (52)

Γ |B=B3 = 18, (53)

independently ofMa (0 < ε < 0.5). Therefore, at least, modification of both fundamental and harmonic symmetric mode
is necessary for the linear system to be controllable, i.e. to assure the existence ofq with which the state can be transfered
the target state.

The analysis for the observability of the linear system would give the same result. Therefore, if we are to detect o
with one sensor for a certain time interval, we would need at least 4 sensors to be able to estimate the initial conditio
rest of the state variables from the measured data using the linear system.

From the knowledge obtained above, the feedback control can be designed such that measurements and actuatio
for only the symmetric modes, i.e.B = B2. Similarly, the measurements are limited to symmetric modes which corresp
to the experiment where asymmetric modes cannot be detected with sensors positioned in the midgap. This givesC[k, k] = 1,
k = 1, . . . ,4, and 0 in the other elements.

For the above design of control, the stability of the linear control system (48) can be examined. Consequently
eigenmodes were found to be stable for large enough values ofG1. The threshold value ofG1 increases withε.

On applying the feedback to the nonlinear system (36) the nonlinear saturated state without control was given as
condition. The resulting performance of the control is characterized by drawing the bifurcation curves for various valueG1.
In Fig. 9, the bifurcation curves forA1, A2, and(A2

1 + A2
2)1/2 are shown. It can be observed that all the amplitudes mono

ically decrease with increasingG1. This shows that with a large enoughG1, the oscillation can be completely suppressed
the linear control.

(a) (b)

(c)

Fig. 9. Bifurcation diagrams of the toy model subjected to theideal control. (a) Fundamental modes, (b) harmonic modes, (c) overall.
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5.4. Feedback control with point heat sources

In the experiment, the control is done by locally measuring and modifying the temperature boundary condition on
surface using two controllers. Compared with the previous ideal case, the spatial locality in both measurement and
should cause more complications. To examine the cause of the limitation of the control, the model problem is formula
the boundary condition,

q(x, z, t) = q1(t)h(z)exp

[
−

(
�x

x − x1

)2]
+ q2(t)h(z)exp

[
−

(
�x

x − x2

)2]
, (54)

where�x represents the length of actuators in the x direction.�x is given the value 0.025, which corresponds to the size
the actuators used in the experiment. Thex-profile of the output from the actuator is estimated with a gaussian function. W
carrying out the integration in Eqs. (31) and (32), we give differentz-profiles,h(z) = g(z), g(z)2 andg(z)dg(z)/dz, for the
fundamental, symmetric harmonic and asymmetric harmonic modes. This is to fit thez-profile of the actuation to the wave o
each mode, in order to focus on the examination of the influence of locality inx-direction. Consequently, we obtainB as a
function ofx1 andx2, which is namedBp hereafter. The inputs areq = [q1, q2]T.

As in the experiment, the temperature is measured at two locationsθ ′(x1,0,1/2, t) andθ ′(x2,0,1/2, t). We find the matrix
C for this case,{

Cp[i,1],Cp[i,2],Cp[i,3],Cp[i,4]} = {sin 2πxi,cos 2πxi,sin4πxi,cos 4πxi}, i = 1,2, (55)

with 0 elements otherwise. Now, givingx1 = 0.25 andx2 = 0.5, which correspond to the optimal positioning of the controll
report by Shiomi and Amberg [14], we obtainCp[1,1] = Cp[2,4] = 1, Cp[1,4] = Cp[2,3] = −1 and 0 in the rest of the
elements.

The local feedback can be realized as Eq. (47), where, based on the experiment,K is designed to beK = −G1I with I as
the identity matrix of second order. Our original idea, on designingK, was to target only the fundamental mode, conside
the harmonic modes to be the secondary phenomena resulting from the nonlinear dynamics of the fundamental oscill
non-diagonal elements of the gain matrixK would represent the coupling between the controllers. Since the state var
and the control do not have the same profiles with the local actuation, it is possible that finite values of non-diagonal
can contribute to the efficiency of the opposition. This was investigated by carrying out a simple estimation conside
opposition of only the fundamental modes (Appendix). Consequently, it was found that theK with the best opposition can b
considered as diagonal matrix for�x = 0.025. Hence, from the symmetry of the system,K was designed take the form a
stated above. The same analysis could be carried out for the full linear system including harmonic modes, however
would violate the limit on the number of sensors in the experiment.

5.4.1. Bifurcation curves
For the nonlinear system with the feedback loop, bifurcation curves for different values ofG1 are plotted in Fig. 10(a)–(c)

In this case, none of the amplitudes show monotonic decrease. As shown in Fig. 10(a), increasingG1 for certain value ofε,
A1 decreases untilG1 reaches a certain value, and then it increases again. However, the suppression is achieved f
parameters,G1 andε explored in the current report.

On the other hand, as shown in Fig. 10(b), it was observed that the harmonic modes can be destabilized with excesG1. For
ε � 0.38, the harmonic modes can be attenuated to some extent, but asG1 exceeds certain values,A2 begins to increase with
G1 and eventually exceeds the initial amplitude without control. Forε � 0.38,A2 shows monotonous increase withG1. In this
regime, control has a destabilizing effect on the harmonic modes.

The bifurcation curves shown in Fig. 10(c) reflect the influence of the control on the total energy of the oscillation.
examined range ofε, the total amplitude decreases asG1 increases from 0. At certain values ofG1 depending on the valu
of ε, the amplitude reaches the minima. We define this optimal value ofG1 asG1,opt. As G1 exceedsG1,opt, the amplitude
monotonically increases.

5.4.2. Overall performance
The overall performance of the control is demonstrated in Fig. 11(a) where the suppression ratio forG1 = G1,opt is plotted

for a range ofε. The suppression ratioγ is defined as the ratio of controlled total amplitude to the uncontrolled one. It ca
seen that, in the weakly nonlinear regime(ε � 0.28), the control achieves complete suppression of the oscillation, i.e. theMacr
was raised by 28%. Beyond the threshold value,γ increases as the nonlinearity becomes stronger.

The result qualitatively agrees very well with the experiment by Shiomi and Amberg [14] whose corresponding r
shown in Fig. 11(b). Both show complete attenuation of the oscillation in the weakly nonlinear regime, then a sudden
of G1 after reaching the threshold values ofε. Note that in the experiment, measurement noise was approximately 10%
uncontrolled signals in the weakly nonlinear regime, henceγ does not become less than 0.1.
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Fig. 10. Bifurcation diagram of the toy model subjected to the local control. (a) Fundamental modes, (b) harmonic modes, (c) ov

(a) (b)

Fig. 11. The overall performance of the proportional control of (a): model equation system and (b): experiments.γ : suppression ratio, the rati
of amplitude controlled with the optimal gain to uncontrolled.

The increase ofγ is accompanied with the amplification of the harmonic modes. In order to compare the current
system with the experiment in this respect, the energy ratios in harmonic modes for the toy model and the experiment a
in Figs. 12 (a) and (b), respectively. In Fig. 12(a),E2 andE02 represent the energy in the harmonic modes of the contro
(with G1,opt) and uncontrolled oscillation. Similarly, in Fig. 12(b),E0hf andEhf are the energies of harmonic frequency. If
assume that, in the experiment, most ofE0hf andEhf belong to the oscillation with harmonic wavenumber, good qualita
agreement could be obtained between the two results, where the energy of the harmonic mode with control rapidly in
certainε and reaches almost triple the original value without control.

It is possible to comment on the cause of the amplification of the harmonic modes by observing the power sp
the controlled oscillation. In Fig. 13, the power spectra of fundamental and symmetric harmonic modes of controlled
tion are plotted together with those of uncontrolled ones. The spectra for controlled/uncontrolled oscillations are dep
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Fig. 12. Energy ratio in the harmonic (a): modes of model equation system, and (b): frequencies of the experiments.Ehf andE2 are the value
with G1,opt, whereE0hf andE02 is the value without control.

Fig. 13. Spectra of the fundamental (top) and harmonic (bottom) modes with (solid line) and without (dashed line) control.

solid/dashed lines. The spectra of asymmetric harmonic modes are omitted since they are the same as symmetric
modes. With control, as the attenuation of the energy can be seen on the original fundamental and harmonic frequenc
respectively belong to fundamental and harmonic modes, there is another peak in the spectrum of the harmonic mo
frequency of 1.78 Hz. Since this is not an overtone of any of the original temporal modes, it should be the result o
destabilization of the harmonic modes.

5.5. Optimal positioning of controllers

For the above case (x1 = 0.25 andx2 = 0.5), controlability and observability matrix can be computed as,Γ |B=Bp =
Ω|C=Cp = 12. Hence the linear system is neither controllable nor observable. Note that, despite this fact, the con
works in the regime withε � 1. When the influence of the harmonic modes is small, it is more suitable to judge the co
lability of the system by computing the criterion for a linear system with only fundamental modes. In this case, with th
local actuation, the resulting system was confirmed to be controllable. Asε increases, the energy in the harmonic modes g
with respect to the fundamental mode (Fig. 4) and the harmonic modes need to be taken into account. Therefore, th
lability should be determined based on the full linear system (43). Although, in this regime, the suppression to som
can still be obtained, this is purely attributed to the attenuation of the fundamental modes. The loss of controlability o
linear system is understandable from the physical picture. Since the original idea in the previous experiment was to
fundamental mode, the heaters were positioned with a phase difference ofπ/2 to control both sine and cosine waves of t
fundamental modes at the same time. However, for the harmonic modes, the phase difference isπ , hence does not cover tw
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Fig. 14. Optimizing the configuration of the controllers.G1 = G1,opt, x2 = 0.5.

degrees of freedom, sine and cosine modes. Therefore the remedy would be to change the heater positions so tha
differences for neither of the mode becomes a multiple ofπ/2. Doing so, we obtainΓ = 18 therefore the system is controllab
With the same argument, system becomes observable with the corresponding change in the sensor position.

In the current study, we limit the control scheme to be a simple one of the experiments where sensor signals are
to paired heaters with common constant control gain. With such a restriction, the satisfaction of the controllability
suggest the possibility to act on all the existing linear modes and does not necessarily mean better control. The effe
of control should certainly depend also on the positions of the sensors and heaters. The dependence of the control pe
on the positioning of the controllers was experimentally investigated by Shiomi and Amberg [14], however it was base
measurements of a coarse variation of the parameters corresponding toδx = |x1 − x2| = 0.25,0.375 in the current study. Usin
the toy model, the investigation can be carried out with finer parameter variation. Results obtained by applying the
control is shown in Fig. 14, where the overall performance of the control for various value ofx1 is plotted. The value ofx2 is
fixed to 0.5. Rangingδx from 0.2 to 0.375, significant improvement of the performance was achieved with the best perform
whenδx = 0.3. With this positioning, the criticality is delayed toε ∼ 0.47.

The result shows a certain agreement with the experiment where control performs better forδx = 0.25 than forδx = 0.375.
The analysis also suggests that we may have jumped over the optimal positioning when varyingδx in the experiment. Of course
there are some questions of the relevancy of the analysis. For instance, in the experiment, the cause which limits the pe
of the control is not evident. Hence, when varying the positioning of sensors and heaters, it is not clear yet if the limi
caused by the appearance of the same wavenumber mode. The selection of the destabilized mode can naturally be
on the configuration of the sensors and heaters. However, the fact that the amplification of the harmonic frequency co
observed independently ofδx gives rise to a speculation that the newly appearing mode might be always the harmonic o

6. Conclusions

To fill the lack of understanding in how the proportional control method influences the system, a simple model prob
formulated. Limiting the number of azimuthal modes to the fundamental and first harmonic modes and roughly assu
other spatial profiles, a set of ordinary differential equations was obtained. The model is formulated to show the basic
of the system such as standing/traveling wave structures and Hopf bifurcation. The model system has open paramete
could be calibrated to the given physical system. Implementing the feedback control to this toy model, we could captu
of the essential qualitative features of the influence of the control. As shown in Figs. 11 and 12, the suppression ratio
rapidly over a certain threshold value ofε due to the destabilization of the harmonic modes.

In spite of the rough estimations made in the derivation of the model system, the model shows very good qualitativ
ment with the experimental results, not only for the uncontrolled system but also for the controlled one. The resul
study suggests that the performance of the linear control with local temperature modification may be limited due to t
destabilization of the harmonic modes.

There is a certain discrepancy in the behaviors of the controlled oscillation in current system and the experiments w
may need to consider before concluding that this study describes the definite cause of the limitation of the control perf
The linear harmonic mode has its own peak in almost double the overtone frequency of the fundamental mode, wh
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not match the observation in the experiment. It is possible that, in the experiment, the linear harmonic modes and
harmonic modes have similar critical frequency, but it is far from certain. Nevertheless the present study points out the p
of destabilizing the harmonic modes of the target modes due to the finite length of the actuator though, instinctively,
against the characteristic of this control method where any waves that are in phase at sensor/heater positions were th
suppressed to some extent.

It should be noted that due to the locality of the actuator and coupling of fundamental and harmonic modes, th
controllability can be satisfied with fewer actuators than the ideal case. This confirms the practicability of suppressio
oscillation using the current proportional control method which was applied in the previous experiments without any the
assurance. Optimizing the positioning of the controller in connection with the linear controllability, the control perfor
could be improved to a significant extent. The result of the analysis agrees well with that found in experiments and
the possibility of improving the control performance in the experiments by adopting finer parameterization of the co
positions

In the case demonstrated in the current report, the solution was limited to have only a single fundamental mode
of simplicity. The number of modes can easily be increased by adding more terms in the solution in order to make th
system applicable to the cases where multiple linear modes appear as in Shiomi et al. [15]. In this case, however, the c
process would be difficult since the model would need to be calibrated against the controlled system.
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Appendix. Designing the gain matrix

A general expression of the wave of theith mode traveling/standing in thex-direction is,

θ ′
i (x, t) = Ai,+(t)sin(2iπx − 2πfi t + ηi,1) + Ai,−(t)sin(2iπx + 2πfi t + ηi,2), (56)

whereηi,1 andηi,2 are the phases of the positive and negative propagating waves of mode (wavenumber inx-direction) i,
respectively, andfi denotes the critical frequency of theith mode. The critical frequencies,fn, were detected from the pea
of the power spectra. The temperature signals at the sensors,θ ′

i
(x1, t), θ ′

i
(x2, t), ∂θ ′

i
(x1, t)/∂t and∂θ ′

i
(x2, t)/∂t can expressed

as functions ofAi,+(t),Ai,−(t), ηi,1 andηi,2. Hence, knowing the former 4 variables, the latter ones can be computed.
Now, we intend to compute the linear gain matrixK with which the best opposition againstθ ′

1 can be obtained. Inputs are th
two temperature signals of the fundamental oscillation atx = x1 andx2. For the sake of convenience in formulation, Eq. (5
is rewritten as

θ ′
1(x, t) =

4∑
j=1

A∗
j (t)χj (φ, t), (57)

whereχ = {sin[2π(x + f1t)],cos[2π(x + f1t)],sin[2π(x − f1t)],cos[2π(x − f1t)]}. Assuming that the cancellation of th
disturbance is done by adding the temperature proportional to the surface heat conductionq∗(x, t) = q|h=1, the objective
function can be written as,

J =
1∫

0

(θ ′
1 − q∗)2 dx, (58)

which is a quadratic function ofA∗
j

andqi . Now we calculate the optimal value with respect to the outputsqi , i = 1,2,

∂J

∂qi
= 0. (59)

Solving the linear equations,qi can be expressed as linear functions ofA∗
j
. Substituting,x1, x2, θ ′

1(x1, t), θ ′
1(x2, t),

∂θ ′
1(x1, t)/∂t and∂θ ′

1(x2, t)/∂t into A∗
j
, the expression is reduced to,[

q1(t)
]

= K
[

θ ′
1(x1, t)

]
(60)
q2(t) θ ′
1(x2, t)
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with constant elements in the 2× 2 matrix,K. The time-dependent parts and the time derivatives spontaneously drop ou
the expression. The values ofK were computed for a range ofx1 andx2 for the given size of the actuator. As a consequen
the optimalK was found to have diagonal elements several orders higher than the non-diagonal elements.
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