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The diffusive-ballistic heat conduction of finite-length single-walled carbon nanotubes has been studied by means of
nonequilibrium molecular dynamics simulations. The length dependence of thermal conductivity is quantified for a range of
nanotube lengths up to 1.6 mm at room temperature. A gradual transition from nearly pure ballistic to diffusive-ballistic heat
conduction was identified from the thermal conductivity profile. In the diffusive-ballistic regime, the profile exhibits power-
law length dependence and does not converge even for a tube length of 1.6 mm. Furthermore, the diameter dependence of
thermal conductivity suggests considerable suppression of the diffusion effect as the diameter decreases.
[DOI: 10.1143/JJAP.47.2005]
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1. Introduction

The expanding roles expected for single-walled carbon
nanotubes (SWNTs) include applications for various elec-
trical and thermal devices due to their unique properties.1)

SWNTs are thought to possess high thermal conductivity
due to their strong carbon bonds and the quasi-one-dimen-
sional structure.2) On considering the actual applications,
one of the essential tasks is to characterize the thermal
properties of SWNTs not only for thermal devices but also
for electrical devices since they determine the affordable
amount of electrical current that can pass through the
system.

Following the thermal conductivity measurements of
SWNTs in the form of mats and bundles,3) with the advances
in SWNT synthesis and micro electro mechanical systems
(MEMS) techniques, the thermal conductivity (or thermal
conductance) measurements of individual carbon nanotubes
have been recently reported not only for multi-walled carbon
nanotubes,4,5) but also for SWNTs.6,7) However, the thermal
property measurements of SWNTs in experiments are still
extremely challenging as there are potential uncertainties
due to various technicalities, for instance related to the
contact resistances between thermal reservoirs and an
SWNT. Uncertainties also arise in the identification of an
isolated SWNT and its diameter. Therefore, reliable theories
and numerical simulations are greatly demanded, particu-
larly to investigate detailed heat conduction characteristics
that are not yet accessible in experiments. One such heat
conduction characteristic with practical importance is the
size effect on thermal conductivity. In general, a size
dependence of thermal conductivity appears when the
system characteristic length is smaller or comparable to
the phonon mean free path.8) For SWNTs, because of the
expected long phonon mean free path, the regime of the
length effect stretches beyond their realistic length in many
applications. The length effect has been demonstrated using
molecular dynamics (MD) simulations9,10) and the power-
law divergence has been discussed with analogy to the low-
dimensional models, where the hydrodynamic effect gives

rise to the long-time heat flux correlation.11) More recently,
the length dependence of thermal conductivity was inves-
tigated up to fully diffusive phonon transport regime using
a kinetic approach,12) where the divergence due to long-
wavelength phonons was shown to disappear in the presence
of second-order (or higher) three-phonon scattering proc-
esses. The transition from pure ballistic to diffusive-ballistic
phonon transport has been discussed by modeling the energy
transmission based on the ratio of the overall average
phonon mean free path to L.13)

In this paper, we aim to demonstrate the diffusive-ballistic
transition of heat conduction in SWNTs at room temperature
by calculating the thermal conductivity for a range of lengths
using nonequilibrium classical MD simulations. MD simu-
lations are capable of handling the phonon transport of all
the phonon branches, unlike the kinetic approach with
relaxation approximations.12) As shown later, this capability
is important for relatively short SWNTs with significant
ballistic phonon transport, particularly at room temperature,
where a wide range of phonon branches are populated.

2. Molecular Dynamics Model

The carbon–carbon interactions were modeled using the
Brenner potential14) in a simplified form,15) where the total
potential energy of the system is expressed as

E ¼
X
i

X
jði<jÞ
bVRðrijÞ � B�ijVAðrijÞc: ð1Þ

Here, VRðrÞ and VAðrÞ are the repulsive and attractive force
terms, respectively, which take a Morse-type form with a
certain cutoff function. B�ij represents the effect of the
bonding order parameters. For the potential parameters, we
employ a set that has been shown to reproduce the linear
phonon transport properties with sufficient accuracy.9,10) The
velocity Verlet method was adopted to integrate the equation
of motion with a time step of 0.5 fs. The suitability of the
classical approach is indicated by the expected dominant
contribution to the heat conduction from phonons compared
with that from electrons.16,17)

When simulating ballistic phonon transport using MD
simulations, the linear transport properties (group velocity)
need to be reproduced with sufficient accuracy. This needs to�E-mail address: maruyama@photon.t.u-tokyo.ac.jp
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be satisfied for phonons with a wide range of frequencies as
their ballistic transport becomes important for short SWNTs
at room temperature. The linear phonon transport properties
can be visualized by the dispersion relations, which can be
computed from MD simulations by obtaining the two-
dimensional Fourier spectra of the time history of the

velocity field along an SWNT. In Fig. 1, the spectra of a
25 nm ð5; 5Þ SWNT at 300 K with a periodic boundary
condition is presented together with the corresponding
phonon density of states (DOS). The phonon energy spectral
density is computed as18)

�ð!; kÞ ¼
m

2

Xp X3

�

1

N

XN�1

n¼0

exp i
n

N
k

� �Z
v�ðn; tÞ expð�i!tÞ dt

� ������
�����
2

ð� ¼ r; �; zÞ; ð2Þ

where N is the number of atoms in the longitudinal (z)
direction (the number of unit cells in the nanotube). p and m

are the number of atoms per unit cell and the mass of a
carbon atom, respectively. The data are discrete due to the
finite length of the nanotube, and the broadening of the
spectral peaks indicates the thermal phonon scattering. The
overall feature of the dispersion relations obtained from MD
simulations agrees with the reported theoretical models,1,19)

and particularly well with the mechanical model of Mahan
and Jeon.19) The phonon DOS gð!Þ can be calculated from

gð!Þh�!�ð!Þ ¼
X
k

�ð!; kÞ;

where the equilibrium phonon distribution is �ð!Þ ¼ kBT=
h�! at the classical limit.

Note that for SWNTs, as the number of phonon branches
is determined by the number of atoms in a unit cell, even for
armchair (or zigzag) SWNTs whose unit cells contain fewer
atoms than other structures with similar diameters, the

dispersion relation depicts diverse phonon branches, as
shown in Fig. 1 for a ð5; 5Þ SWNT. There are optical phonon
modes with a small circumferential wave number and low
frequency that have similar dispersion characteristics and
heat capacity to the acoustic modes, particularly in the
intermediate-wave-vector (k) regime. Although, acoustic
modes may still possess the longest mean free path, the
contribution of these optical modes is expected to become
important when their mean free paths are comparable to L.

3. Thermal Conductivity Calculations

The thermal conductivity � of an SWNT was measured by
nonequilibrium MD simulations. After reaching an isother-
mal state at 300 K by auxiliary velocity scaling control, the
temperature-controlled layers on both ends of the SWNT
were activated to apply a temperature difference of 20 K.
Eventually the system converged to a quasi-stationary state
with a linear temperature gradient. The simulation time
ranges within 3 –18 ns because the data convergence time
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Fig. 1. (Color online) (a) Discrete phonon dispersion relations and (b) phonon DOS of a 25-nm-long ð5; 5Þ SWNT. The dispersion

relations were obtained by computing the phonon energy spectral density from MD simulations.18) The wave vector k-space is

normalized by the Brillouin zone width, �=a. In the current case with an armchair SWNT, a ¼
ffiffiffi
3
p

Ac{c, where Ac{c is the interatomic

distance. The focused view (c) shows the phonon dispersion in the low-frequency region for clarity.
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depends on the system size. By calculating the heat flux
along the SWNT from the energy budgets of the thermostats,
� was calculated through Fourier’s law. The cross-sectional
area A of an SWNT was defined using a ring of
van der Waals thickness �bd, where b ¼ 0:34 nm. The
validity of the temperature gradient of 20 K for short
SWNTs was examined by performing additional simulations
for a temperature gradient of 10 K in the case of L ¼ 25 nm.
The converged value of thermal conductivity was 236 W/
mK compared with 223 W/mK for the 20 K gradient case.
Hence, the difference was confirmed to be small enough.
The validity of using thermal conductivity to express the
heat conduction of the current system is questionable due
to the extensive ballistic heat transport. Furthermore, the
definition of the area of an isolated SWNT is rather
ambiguous. Although simply expressing the heat conduction
as thermal conductance may be more suitable, here we use
thermal conductivity for the sake of comparison with
previous studies.

Upon carrying out nonequilibrium MD simulations by
locally applying thermostats to a crystal system, the inter-
face between the temperature-controlled part and the rest
of the system typically gives rise to a thermal boundary
resistance (TBR). A TBR appears due to the mismatching of
the lattice-vibrational spectra of the temperature-controlled
part and the rest of the system. This mismatching causes the
reflection of phonons and alters the scattering dynamics at
the interface. Since a TBR is expected to influence the local
nonequilibrium phonon distribution and hence alter the heat
conduction, thermostats and their parameters need to be
carefully selected to minimize the TBR.

It is important to state that the TBR effect is not entirely a
numerical artifact. For instance, in practical use of the lateral
heat conduction of SWNTs to promote heat transfer, finite-
length SWNTs would be bounded by connections to other
materials. In this case, the heat conduction properties would
be inevitably altered by TBRs at the connections. Therefore,
in fact, it would be more realistic to examine the heat
conduction of SWNTs with presence of such interfacial
thermal resistances, although the formulation of a general
case would be difficult since such effects would be strongly
case-dependent. In the current study, for the sake of
comparison with other reported theoretical works and to
focus on studying the intrinsic dynamics, we aim to
construct an ideal case by minimizing the TBR effect.

Firstly, the temperature gradient was applied using the
phantom technique as in the previous works.9,10) Here, a
phantom thermostat consists of a fixed layer and a phantom
layer, which are both monolayer unit cells. The phantom
layer is placed between the fixed layer at the tube end and
the rest of the SWNT, and is controlled by the Langevin
equation. The Debye temperature of diamond was chosen
as the damping parameter of the Langevin equation. This
formulation aims to damp the phonons traveling into the
phantom layer and hence to prevent the phonons from being
reflected at the tube ends. Therefore, a phantom thermostat
ideally models isothermal layers with sufficient length.

For SWNTs, the simulations using the phantom technique
were validated by performing an additional set of simula-
tions adopting standard Nose–Hoover (NH) thermostats.20,21)

A straightforward application of an NH thermostat without

any virtual dynamics makes the method simple and robust,
although it is more computationally expensive than the
previous method. The thermostats have two tuning param-
eters; the length of the temperature-controlled part Lc and
the relaxation time �. Figure 2 shows the temperature
profiles obtained by using the NH thermostat for various
values of Lc, where distinct TBRs can be observed as
temperature jumps. For instance, in the case of Lc ¼ 0:01L,
temperature jumps at the interfaces account for about 50% of
the total temperature difference between the tube ends.

In order to minimize the TBRs, parameters Lc and � were
tuned. The influences of Lc and � on the key thermal
properties are shown in Figs. 2–4. The elongation of Lc

permits longer-wavelength phonon modes and hence attenu-
ates the discrepancy of the phonon spectra between the
temperature-controlled part and the rest of the nanotube.
This can be seen in the Lc dependence of temperature
profiles (Fig. 2), where a shorter Lc results in larger TBRs.
More detailed views are given in Figs. 3(a)–3(c) which show
the Lc dependences of the temperature gradient, heat flux,
and thermal conductivity, respectively. Both the temperature
gradient and the heat flux increased with Lc and eventually
saturated at the upper limit Lc=L � 1, independently of �.
The corresponding trend of � is similar except for the value
for Lc=L ¼ 0:01. Therefore, considering the computational
cost, we used Lc ¼ 0:5L as an optimal value.

Regarding the relaxation time, a longer � is expected to
give the temperature-controlled layers more time to adjust
the spectrum to that of the rest of the SWNT. The variation
of TBRs with respect to � is shown in Fig. 4 for Lc ¼ 0:5L.
The figure shows the sum of the TBRs on the hot and cold
sides R for various nanotube lengths, within the parameter
bounds (40 < � < 4 ns), beyond which the quasi-linear
temperature profile is significantly disturbed. Below the
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Fig. 2. (Color online) Influence of the length of the layers controlled by

NH thermostat (Lc) on the temperature profile (L ¼ 25 nm).

Jpn. J. Appl. Phys., Vol. 47, No. 4 (2008) J. SHIOMI and S. MARUYAMA

2007



lower bound, the phonon spectra of the temperature-
controlled layers and the rest of the SWNT were found to
exhibit severe mismatching. On the other hand, above the
upper bound, the data hardly converged. The figure shows
that R takes a minimum value for a critical relaxation time
�cr. On varying L from 25 to 201 nm, �cr exhibits a moderate
variation between 400 fs and 40 ps. On considering the
observed trend that �cr increases with L, we take � ¼ 40 ps as
the optimal value. Note that one order difference in � results
in approximately 10% difference in thermal conductivity.

4. Effects of Length and Diameter on SWNT Thermal
Conductivity

Figure 5 shows the length effect on the thermal con-

ductivity of SWNTs for a range of L up to 1.6 mm. It can be
seen that the differences between the values obtained for
ð5; 5Þ SWNTs using the phantom technique (filled circles)
and NH thermostats (open circles) are negligible. The
overall trend of the slope (@�=@L) clearly indicates the
gradual transition from strongly ballistic to diffusive-
ballistic phonon transport. When all the phonons experience
ballistic phonon transport, � is proportional to L (constant
thermal conductance). The asymptotic match of the gra-
dients of the thermal conductivity profiles to that of the
dashed line suggests dominant ballistic phonon transport at
the small L limits. Note that on considering the significant
phonon population in a range of phonon branches at room
temperature, we expect contributions to the heat conduction
not only from the ballistic transport of acoustic phonon
modes but also from that of various optical phonon modes in
the small-L regime. This is consistent with the results of the
MD realization of non-Fourier heat conduction in 25 nm
long SWNTs, where the ballistic transport of collective
optical phonons was observed to play an important role.18)

The gradient @�=@L gradually decreases as L increases since
the phonon mean free paths gradually become shorter
relative to L, i.e., diffusive phonon transport is gradually
enhanced with respect to ballistic phonon transport. The
figure also shows that the thermal conductivity of SWNTs
does not converge in the range of L explored in the current
work (�1:6 mm). Furthermore, in connection with the
discussion on the divergence of thermal conductivity,11,12)

we could fit power-law functions to the obtained profiles. As
denoted in Fig. 5, by fitting power laws for L > 100 nm, we
obtained the exponents of 0.19 and 0.33 for ð5; 5Þ and ð3; 3Þ
SWNTs, respectively. The power-law length dependence of
thermal conductivity can be explained by the weak three-
phonon scattering of long-wavelength phonons compro-
mised by the higher order processes12) and/or the long-time
heat current correlations in low dimensions.22)
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Let us now examine the diameter (d) dependence of
SWNT thermal conductivity. For small L, where the phonon
transport is dominantly ballistic, the thermal conductivity
exhibits negligible dependence on the diameter. This
independence for small L is consistent with the above
discussion that ballistic phonon transport is dominant in this
regime. At the ballistic phonon transport limit, where all the
populated phonons experience ballistic transport, thermal
conductance is proportional to the number of atoms per unit
cell, i.e., the diameter, if we ignore the variation of the linear
phonon transport property (dispersion relations) due to the
changes in the unit-cell size and the curvature. This means,
with the current definition of A ¼ �bd, that the thermal
conductivity is independent of the diameter. As L increases,
the diameter dependence becomes noticeable, and the
thermal conductivity profiles of ð3; 3Þ and ð5; 5Þ SWNTs
deviate from each other above L � 100 nm. Current results
show that, in the large-L regime, thermal conductivity is
greater, i.e., the diffusion effect is smaller for SWNTs with
smaller d. The trend is consistent with the above-mentioned
possible origins of the power-law length dependence. The
exponent of the thermal conductivity divergence due to the
long-wavelength phonons increases as d decreases13) be-
cause of the variation in the phonon DOS. Similarly, the
long-time correlation22) is also expected to increase as d

decreases due to the reduction of the number of phonon
channels per length. The exact mechanism of the power-law
length dependence cannot be identified from the present
diameter dependence of the exponent. A detailed examina-
tion of the heat flux autocorrelation function in the equi-
librium framework is needed to discuss this mechanism
further.

5. Conclusions

Nonequilibrium MD simulations were conducted to
investigate the heat conduction of SWNTs at room temper-
ature. The effects of the length and diameter on the thermal
conductivity were quantified over a range of L and for two
different diameters. A gradual transition from nearly pure
ballistic phonon transport to diffusive-ballistic phonon
transport was clearly observed. In the small-L regime with
strong ballistic transport, there is a significant contribution

to the heat conduction from a range of optical phonons. A
consistent picture of ballistic phonon transport was obtained
from the diameter dependence; thermal conductivity is
diameter-invariant for small L. In the regime of L with
significant diffusive phonon transport, power-law length
dependence was identified with increasing exponent as the
diameter decreased. In this regime, the thermal conductivity
does not converge even for 1.6 mm tube length.
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